Vision-based Semantic Unscented FastSLAM for mobile robot

This paper proposes a vision-based Semantic Unscented FastSLAM (UFastSLAM) algorithm for mobile robot combing the semantic relationship and the unscented FastSLAM. The landmarks are detected by a binocular vision, and the semantic observation model can be created by transforming the semantic relationships into the semantic metric map. Semantic Unscented FastSLAM can be used to update the localization of the landmarks and robot pose even when the encoders inherits large accummative errors that may not be corrected by the loop closure detection of the vision system Experiments have been carried out to demonstrate that the Semantic Unscented FastSLAM algorithm can achieve much better performance in indoor autonomous survalience than Unscented FastSLAM.

[1]  Il Hong Suh,et al.  Active-semantic localization with a single consumer-grade camera , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[2]  Javier González,et al.  Fast place recognition with plane-based maps , 2013, 2013 IEEE International Conference on Robotics and Automation.

[3]  José Ruíz Ascencio,et al.  Visual simultaneous localization and mapping: a survey , 2012, Artificial Intelligence Review.

[4]  Andrew Calway,et al.  Efficient visual odometry using a structure-driven temporal map , 2012, 2012 IEEE International Conference on Robotics and Automation.

[5]  Tom Drummond,et al.  Edge landmarks in monocular SLAM , 2009, Image Vis. Comput..

[6]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[7]  Kurt Konolige,et al.  Navigation in hybrid metric-topological maps , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Jean-Arcady Meyer,et al.  Visual topological SLAM and global localization , 2009, 2009 IEEE International Conference on Robotics and Automation.

[9]  Yoshiaki Shirai,et al.  Panoramic View-Based Navigation in Outdoor Environments Based on Support Vector Learning , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Kyoung Mu Lee,et al.  Monocular SLAM with locally planar landmarks via geometric rao-blackwellized particle filtering on Lie groups , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  James J. Little,et al.  Design and analysis of a framework for real-time vision-based SLAM using Rao-Blackwellised particle filters , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[12]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[13]  Simone Frintrop,et al.  Attentional Landmarks and Active Gaze Control for Visual SLAM , 2008, IEEE Transactions on Robotics.

[14]  Toby P. Breckon,et al.  Cross-spectral visual simultaneous localization and mapping (SLAM) with sensor handover , 2013, Robotics Auton. Syst..

[15]  Il Hong Suh,et al.  Bayesian robot localization using spatial object contexts , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Ian D. Reid,et al.  On combining visual SLAM and visual odometry , 2010, 2010 IEEE International Conference on Robotics and Automation.

[17]  Walterio W. Mayol-Cuevas,et al.  Discovering Higher Level Structure in Visual SLAM , 2008, IEEE Transactions on Robotics.

[18]  Luis Miguel Bergasa,et al.  Real-Time Simultaneous Localization and Mapping using a Wide-Angle Stereo Camera and Adaptive Patches , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Walterio W. Mayol-Cuevas,et al.  Robust Real-Time Visual SLAM Using Scale Prediction and Exemplar Based Feature Description , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Gaurav S. Sukhatme,et al.  Semantic Mapping Using Mobile Robots , 2008, IEEE Transactions on Robotics.

[21]  Luis Payá,et al.  Visual Hybrid SLAM: An Appearance-Based Approach to Loop Closure , 2013, ROBOT.

[22]  Sebastian Thrun,et al.  Integrating Grid-Based and Topological Maps for Mobile Robot Navigation , 1996, AAAI/IAAI, Vol. 2.

[23]  Joaquim Salvi,et al.  Appearance-Based SLAM for Mobile Robots , 2009, CCIA.

[24]  Frank Dellaert,et al.  Semantic Modeling of Places using Objects , 2007, Robotics: Science and Systems.

[25]  James J. Little,et al.  Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Ian D. Reid,et al.  Automatic Relocalisation for a Single-Camera Simultaneous Localisation and Mapping System , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[27]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[28]  Tieniu Tan,et al.  Mobile robot self-localization based on global visual appearance features , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[29]  Wan Kyun Chung,et al.  Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem , 2008, IEEE Transactions on Robotics.