Faster Hashing to ${\mathbb G}_2$

An asymmetric pairing $e\colon{\mathbb{G}}_2\times{\mathbb{G}}_1\to{\mathbb{G}}_T$ is considered such that ${\mathbb{G}}_1=E({\mathbb F}_p)[r]$ and ${\mathbb{G}}_2=\tilde E({\mathbb F}_{p^{k/d}})[r]$ , where k is the embedding degree of the elliptic curve $E/{\mathbb F}_p$ , r is a large prime divisor of $\# E({\mathbb F}_p)$ , and $\tilde E$ is the degree-d twist of E over ${\mathbb F}_{p^{k/d}}$ with $r \mid \tilde E ({\mathbb F}_{p^{k/d}} )$ . Hashing to ${\mathbb{G}}_1$ is considered easy, while hashing to ${\mathbb{G}}_2$ is done by selecting a random point Q in $\tilde E({\mathbb F}_{p^{k/d}})$ and computing the hash value cQ, where c·r is the order of $\tilde E({\mathbb F}_{p^{k/d}})$ . We show that for a large class of curves, one can hash to ${\mathbb{G}}_2$ in $\textup{O}(1/\varphi (k)\log c)$ time, as compared with the previously fastest-known $\textup{O}(\log p)$ . In the case of BN curves, we are able to double the speed of hashing to ${\mathbb{G}}_2$ . For higher-embedding-degree curves, the results can be more dramatic. We also show how to reduce the cost of the final-exponentiation step in a pairing calculation by a fixed number of field multiplications.

[1]  Hovav Shacham,et al.  Pairing-Based Cryptography - Pairing 2009, Third International Conference, Palo Alto, CA, USA, August 12-14, 2009, Proceedings , 2009, Pairing.

[2]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[3]  Paulo S. L. M. Barreto,et al.  A family of implementation-friendly BN elliptic curves , 2011, J. Syst. Softw..

[4]  Michael Scott,et al.  On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves , 2009, Pairing.

[5]  David Mandell Freeman,et al.  Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10 , 2006, ANTS.

[6]  Victor S. Miller,et al.  The Weil Pairing, and Its Efficient Calculation , 2004, Journal of Cryptology.

[7]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[8]  Michael Scott,et al.  A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.

[9]  Francisco Rodríguez-Henríquez,et al.  High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves , 2010, Pairing.

[10]  Michael Scott,et al.  Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions , 2009, IACR Cryptol. ePrint Arch..

[11]  Michael Scott,et al.  Fast Hashing to G2 on Pairing-Friendly Curves , 2009, Pairing.

[12]  Patrick Longa,et al.  Faster Explicit Formulas for Computing Pairings over Ordinary Curves , 2011, EUROCRYPT.

[13]  A. Miyaji,et al.  New Explicit Conditions of Elliptic Curve Traces for FR-Reduction , 2001 .

[14]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[15]  Darrel HANKERSON,et al.  Software Implementation of Pairings , 2009, Identity-Based Cryptography.

[16]  A. Miyaji,et al.  Pairing-Based Cryptography - Pairing 2010 , 2011 .

[17]  Alfred Menezes,et al.  Pairing-Based Cryptography at High Security Levels , 2005, IMACC.

[18]  Frederik Vercauteren,et al.  Optimal Pairings , 2010, IEEE Transactions on Information Theory.

[19]  Kenneth G. Paterson Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings , 2011, EUROCRYPT.

[20]  Alfred Menezes,et al.  Elliptic curve public key cryptosystems , 1993, The Kluwer international series in engineering and computer science.

[21]  Moti Yung,et al.  Advances in Cryptology — CRYPTO 2002 , 2002, Lecture Notes in Computer Science.

[22]  Koray Karabina Squaring in cyclotomic subgroups , 2013, Math. Comput..

[23]  Paulo S. L. M. Barreto,et al.  Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..

[24]  Moti Yung,et al.  A New Randomness Extraction Paradigm for Hybrid Encryption , 2009, EUROCRYPT.

[25]  Michael Scott,et al.  Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field , 2008, Pairing.

[26]  Florian Hess,et al.  Pairing Lattices , 2008, Pairing.

[27]  Frederik Vercauteren,et al.  The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.

[28]  Colin Boyd,et al.  Cryptography and Coding , 1995, Lecture Notes in Computer Science.

[29]  Aggelos Kiayias,et al.  Multi-query Computationally-Private Information Retrieval with Constant Communication Rate , 2010, Public Key Cryptography.

[30]  Jorge Olivos On Vectorial Addition Chains , 1981, J. Algorithms.

[31]  Aggelos Kiayias,et al.  Polynomial Reconstruction Based Cryptography , 2001, Selected Areas in Cryptography.

[32]  Michael Scott,et al.  Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves , 2009, Journal of Cryptology.

[33]  Ricardo Dahab,et al.  Implementing Cryptographic Pairings over Barreto-Naehrig Curves , 2007, Pairing.

[34]  Steven D. Galbraith,et al.  Pairing-Based Cryptography - Pairing 2008, Second International Conference, Egham, UK, September 1-3, 2008. Proceedings , 2008, Pairing.

[35]  Tsuyoshi Takagi,et al.  Pairing-Based Cryptography - Pairing 2007, First International Conference, Tokyo, Japan, July 2-4, 2007, Proceedings , 2007, Pairing.

[36]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[37]  Hyang-Sook Lee,et al.  Efficient and Generalized Pairing Computation on Abelian Varieties , 2009, IEEE Transactions on Information Theory.