Haptic-driven applications to molecular modeling: state-of-the-art and perspectives.

Drug design is a creative process that combines different scientific expertise. With the development of increasingly powerful computers, disciplines such as molecular modeling and, in particular, drug design, are becoming an important component of drug discovery. However, modern software often limits the user interaction with the computer calculation, reducing the potential for researchers to use their knowledge in the design process. For this reason, interactive methodologies have been investigated in recent years. In particular, haptic-driven simulators offer the possibility for users to drive and control the modeling simulations, efficiently combining human knowledge and computational power. In this article, we will discuss the state-of-the-art and future perspectives of such methodologies.

[1]  Thomas Bäck,et al.  The Molecule Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules , 2006, J. Chem. Inf. Model..

[2]  Erk Subasi,et al.  A New Haptic Interaction and Visualization Approach for Rigid Molecular Docking in Virtual Environments , 2008, PRESENCE: Teleoperators and Virtual Environments.

[3]  Klaus Schulten,et al.  Steered Molecular Dynamics , 1999, Computational Molecular Dynamics.

[4]  Ting Li,et al.  Comparing machines and humans on a visual categorization test , 2011, Proceedings of the National Academy of Sciences.

[5]  Olga Sourina,et al.  Six Degree-of-Freedom Haptic Rendering for Biomolecular Docking , 2011, Trans. Comput. Sci..

[6]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[7]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[8]  Klaus Schulten,et al.  A system for interactive molecular dynamics simulation , 2001, I3D '01.

[9]  Lars S. Nyland,et al.  A virtual environment for steered molecular dynamics , 1999, Future Gener. Comput. Syst..

[10]  J. Irwin,et al.  ZINC ? A Free Database of Commercially Available Compounds for Virtual Screening. , 2005 .

[11]  Markus Sitzmann,et al.  Software and resources for computational medicinal chemistry. , 2011, Future medicinal chemistry.

[12]  Anders Ynnerman,et al.  Designing and Evaluating a Haptic System for Biomolecular Education , 2007, 2007 IEEE Virtual Reality Conference.

[13]  Stephen D. Laycock,et al.  A Survey of Haptic Rendering Techniques , 2007, Comput. Graph. Forum.

[14]  Stéphane Régnier,et al.  Stable six degrees of freedom haptic feedback for flexible ligand-protein docking , 2009, Comput. Aided Des..

[15]  Nicola Zonta,et al.  Accessible haptic technology for drug design applications , 2009, Journal of molecular modeling.

[16]  Markus Reiher,et al.  Generation of potential energy surfaces in high dimensions and their haptic exploration. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Antoine Ferreira,et al.  Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality , 2008, Microelectron. J..

[18]  Klaus Schulten,et al.  Immersive Molecular Visualization and Interactive Modeling with Commodity Hardware , 2010, ISVC.

[19]  I M Kapetanovic,et al.  Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. , 2008, Chemico-biological interactions.

[20]  Tomasz Arodz,et al.  Computational methods in developing quantitative structure-activity relationships (QSAR): a review. , 2006, Combinatorial chemistry & high throughput screening.

[21]  R. C. Goertz,et al.  THE ANL MODEL 3 MASTER-SLAVE ELECTRIC MANIPULATOR--ITS DESIGN AND USE IN A CAVE , 1961 .

[22]  Marc Baaden,et al.  Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments , 2010, Nucleic acids research.

[23]  K. Schulten,et al.  Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics. , 2003, Biophysical journal.

[24]  Yong-Gu Lee,et al.  Smoothing haptic interaction using molecular force calculations , 2004, Comput. Aided Des..

[25]  Klaus Schulten,et al.  GPU acceleration of cutoff pair potentials for molecular modeling applications , 2008, CF '08.

[26]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[27]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[28]  Alexandre Gillet,et al.  Tangible interfaces for structural molecular biology. , 2005, Structure.

[29]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[30]  Frederick P. Brooks,et al.  Project GROPEHaptic displays for scientific visualization , 1990, SIGGRAPH.

[31]  Matthew B. Stocks,et al.  Interacting with the biomolecular solvent accessible surface via a haptic feedback device , 2009, BMC Structural Biology.

[32]  Markus Reiher,et al.  Haptic quantum chemistry , 2009, J. Comput. Chem..

[33]  Richard Dawes,et al.  Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. , 2007, The Journal of chemical physics.

[34]  David J. Zielinski,et al.  KinImmerse: Macromolecular VR for NMR ensembles , 2008, Source Code for Biology and Medicine.

[35]  Marc Baaden,et al.  Complex molecular assemblies at hand via interactive simulations , 2009, J. Comput. Chem..

[36]  Hiroshi Tanaka,et al.  Concept and prototype of protein-ligand docking simulator with force feedback technology , 2002, Bioinform..

[37]  Frederick P. Brooks,et al.  Using a manipulator for force display in molecular docking , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[38]  Aude Bolopion,et al.  Comparing position and force control for interactive molecular simulators with haptic feedback. , 2010, Journal of molecular graphics & modelling.

[39]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[40]  Kwong-Sak Leung,et al.  Interactive Drug Design in Virtual Reality , 2011, 2011 15th International Conference on Information Visualisation.

[41]  Mark Evans Rapid prototyping and industrial design practice: can haptic feedback modelling provide the missing tactile link? , 2005 .

[42]  Matteo Dal Peraro,et al.  An introduction to quantum chemical methods applied to drug design. , 2011, Frontiers in bioscience.

[43]  J. Bajorath,et al.  State-of-the-art in ligand-based virtual screening. , 2011, Drug discovery today.

[44]  Vincent Hayward,et al.  Haptic interfaces and devices , 2004 .

[45]  Kenneth M Merz,et al.  Haptic applications for molecular structure manipulation. , 2007, Journal of molecular graphics & modelling.

[46]  Stefan Birmanns,et al.  Immersive structural biology: a new approach to hybrid modeling of macromolecular assemblies , 2009, Virtual Reality.

[47]  Franck Vidal,et al.  Developing a needle guidance virtual environment with patient-specific data and force feedback , 2005 .

[48]  Yuan-Shin Lee,et al.  Interactive Computer-Aided Design for Molecular Docking and Assembly , 2006 .

[49]  Michel F. Sanner,et al.  Role of haptics in teaching structural molecular biology , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..