Hierarchic Voronoi skeletons

Abstract Robust and time-efficient skeletonization of a (planar) shape, which is connectivity preserving and based on Euclidean metrics, can be achieved by first regularizing the Voronoi diagram (VD) of a shape's boundary points, i.e. by removal of noise-sensitive parts of the tessellation and then by establishing a hierarchic organization of skeleton constituents. Each component of the VD is attributed with a measure of prominence which exhibits the expected invariance under geometric transformations and noise. The second processing step, a hierarchic clustering of skeleton branches, leads to a multiresolution representation of the skeleton, termed skeleton pyramid.

[1]  Edward S. Deutsch,et al.  Thinning algorithms on rectangular, hexagonal, and triangular arrays , 1972, Commun. ACM.

[2]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[3]  Wayne Niblack,et al.  Generating skeletons and centerlines from the medial axis transform , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[4]  Richard W. Hall,et al.  Fast parallel thinning algorithms: parallel speed and connectivity preservation , 1989, CACM.

[5]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Wayne Niblack,et al.  Generating connected skeletons for exact and approximate reconstruction , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Shigeki Yokoi,et al.  DISTANCE TRANSFORMATIONS AND SKELETONS OF DIGITIZED PICTURES WITH APPLICATIONS , 1981 .

[8]  Amitava Datta,et al.  A parallel algorithm for decomposition of binary objects through skeletonization , 1991, Pattern Recognit. Lett..

[9]  David W. Paglieroni,et al.  Distance transforms: Properties and machine vision applications , 1992, CVGIP Graph. Model. Image Process..

[10]  M. Brady Criteria for Representations of Shape , 1983 .

[11]  Robert L. Ogniewicz,et al.  Skeleton-space: a multiscale shape description combining region and boundary information , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Azriel Rosenfeld,et al.  Axial representations of shape , 1986, Computer Vision Graphics and Image Processing.

[13]  Owen Robert Mitchell,et al.  Rapid Euclidean distance transform using grayscale morphology decomposition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .

[15]  Wen Xu,et al.  CGT: A fast thinning algorithm implemented on a sequential computer , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[17]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[18]  J. Sklansky,et al.  Skeleton generation fromx, y boundary sequences , 1981 .

[19]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[20]  Luc Vincent,et al.  Exact Euclidean distance function by chain propagations , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Fernand Meyer Digital Euclidean skeletons , 1990, Other Conferences.

[22]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Ugo Montanari,et al.  A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.

[25]  F. Bookstein The line-skeleton , 1979 .

[26]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[27]  Kazuo Murota,et al.  A Fast Voronoi-Diagram Algorithm With Quaternary Tree Bucketing , 1984, Inf. Process. Lett..

[28]  T. Pavlidis A thinning algorithm for discrete binary images , 1980 .

[29]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ugo Montanari,et al.  Continuous Skeletons from Digitized Images , 1969, JACM.

[31]  Jean Chorowicz,et al.  Parametrisable skeletonization of binary and multi-level images , 1990, Pattern Recognit. Lett..

[32]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[33]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Martin D. Levine,et al.  Multiple Resolution Skeletons , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Raymond W. Smith,et al.  Computer processing of line images: A survey , 1987, Pattern Recognit..

[36]  Markus Ilg,et al.  Knowledge-Based Interpretation of Road Maps Based on Symmetrical Skeletons , 1990, MVA.

[37]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[38]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[40]  Gabriella Sanniti di Baja,et al.  Skeletonizing the distance transform on the hexagonal grid , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[41]  Gabriella Sanniti di Baja,et al.  A One-Pass Two-Operation Process to Detect the Skeletal Pixels on the 4-Distance Transform , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Yun Xia,et al.  Skeletonization via the Realization of the Fire Front's Propagation and Extinction in Digital Binary Shapes , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Gunilla Borgefors,et al.  Distance transformations on hexagonal grids , 1989, Pattern Recognit. Lett..

[44]  Charles R. Dyer,et al.  Shape Smoothing Using Medial Axis Properties , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[46]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[47]  Jose L. Navalón,et al.  A thinning algorithm based on contours , 1987 .

[48]  Paul C. K. Kwok,et al.  A thinning algorithm by contour generation , 1988, CACM.

[49]  Roland T. Chin,et al.  A one-pass thinning algorithm and its parallel implementation , 1987, Comput. Vis. Graph. Image Process..

[50]  H. Yamada Complete Euclidean Distance Transformation by Parallel Poeration , 1984 .

[51]  Oscar Firschein,et al.  Readings in computer vision: issues, problems, principles, and paradigms , 1987 .

[52]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[53]  P. Danielsson Euclidean distance mapping , 1980 .

[54]  Gabriella Sanniti di Baja,et al.  Finding local maxima in a pseudo-Euclidian distance transform , 1988, Comput. Vis. Graph. Image Process..

[55]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[56]  Azriel Rosenfeld,et al.  Human and Machine Vision , 1983 .

[57]  John M. Gauch,et al.  Hierarchical Figure-Based Shape Description for Medical Imaging , 1988 .

[58]  Stephen M. Pizer,et al.  Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Bruce Randall Donald,et al.  Simplified Voronoi diagrams , 1987, SCG '87.

[60]  Olaf Kübler,et al.  Medial manifolds and hierarchical description of 2D and 3D objects with applications to MRI data of , 1993 .

[61]  I. Ragnemalm Rotation invariant skeletonization by thinning using anchor points , 1993 .