Boundary Detection by Constrained Optimization

A statistical framework is used for finding boundaries and for partitioning scenes into homogeneous regions. The model is a joint probability distribution for the array of pixel gray levels and an array of labels. In boundary finding, the labels are binary, zero, or one, representing the absence or presence of boundary elements. In partitioning, the label values are generic: two labels are the same when the corresponding scene locations are considered to belong to the same region. The distribution incorporates a measure of disparity between certain spatial features of block pairs of pixel gray levels, using the Kolmogorov-Smirnov nonparametric measures of difference between the distributions of these features. The number of model parameters is minimized by forbidding label configurations, which are assigned probability zero. The maximum a posteriori estimator of boundary placements and partitionings is examined. The forbidden states introduce constraints into the calculation of these configurations. Stochastic relaxation methods are extended to accommodate constrained optimization. >

[1]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[2]  Thomas S. Huang,et al.  Image processing , 1971 .

[3]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[4]  Triendl Ee,et al.  Recognition and reproduction of textures , 1973 .

[5]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[6]  William B. Thompson,et al.  Building a Distance Function for Gestalt Grouping , 1975, IEEE Transactions on Computers.

[7]  William B. Thompson,et al.  Textural Boundary Analysis , 1977, IEEE Transactions on Computers.

[8]  William A. Yasnoff,et al.  Error measures for scene segmentation , 1977, Pattern Recognit..

[9]  T M Cannon,et al.  Comparison of image restoration methods. , 1978, Applied optics.

[10]  A. Rosenfeld,et al.  Image segmentation and image models , 1979, Proceedings of the IEEE.

[11]  Thomas C. Henderson,et al.  MODEL FOR TEXTURE EDGES. , 1980 .

[12]  K. Laws Textured Image Segmentation , 1980 .

[13]  James W. Modestino,et al.  Texture Discrimination Based Upon an Assumed Stochastic Texture Model , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrew Blake,et al.  The least-disturbance principle and weak constraints , 1983, Pattern Recognit. Lett..

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  J. Marroquín Surface Reconstruction Preserving Discontinuities , 1984 .

[17]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Ralph Linsker,et al.  An Iterative-Improvement Penalty-Function-Driven Wire Routing System , 1984, IBM J. Res. Dev..

[19]  E. Bonomi,et al.  The N-City Travelling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm , 1984 .

[20]  Songde Ma,et al.  Sequential synthesis of natural textures , 1985, Comput. Vis. Graph. Image Process..

[21]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[22]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[23]  Bruce Hajek,et al.  A tutorial survey of theory and applications of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[24]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[25]  W. Eric L. Grimson,et al.  Discontinuity detection for visual surface reconstruction , 1985, Comput. Vis. Graph. Image Process..

[26]  C. Malsburg,et al.  Statistical Coding and Short-Term Synaptic Plasticity: A Scheme for Knowledge Representation in the Brain , 1986 .

[27]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[30]  Michael J. Brooks,et al.  The variational approach to shape from shading , 1986, Comput. Vis. Graph. Image Process..

[31]  Harold H. Szu Non-Convex Optimization , 1986, Optics & Photonics.

[32]  H. Derin,et al.  Segmentation of textured images using Gibbs random fields , 1986 .

[33]  B. Ripley Statistics, images, and pattern recognition , 1986 .

[34]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Chee Sun Won,et al.  A parallel image segmentation algorithm using relaxation with varying neighborhoods and its mapping to array processors , 1987, Computer Vision Graphics and Image Processing.

[36]  Pierre A. Devijver,et al.  Learning the parameters of a hidden Markov random field image model: A simple example , 1987 .

[37]  Emile H. L. Aarts,et al.  Simulated annealing: A pedestrian review of the theory and some applications , 1987 .

[38]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[39]  H. Voorhees Finding Texture Boundaries in Images , 1987 .

[40]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[41]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Donald Geman,et al.  Stochastic model for boundary detection , 1987, Image Vis. Comput..

[43]  S. Geman,et al.  Locating texture and object boundaries , 1987 .

[44]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[45]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Rama Chellappa,et al.  Stochastic and deterministic algorithms for MAP texture segmentation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[47]  D. Stroock,et al.  Simulated annealing via Sobolev inequalities , 1988 .

[48]  B. Chalmond Image restoration using an estimated Markov model , 1988 .

[49]  Rangasami L. Kashyap,et al.  Texture Boundary Detection Based on the Long Correlation Model , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..