Insect inspired visual motion sensing and flying robots

Flying insects excellently master visual motion sensing techniques. They use dedicated motion processing circuits at a low energy and computational costs. Thanks to observations obtained on insect visual guidance, we developed visual motion sensors and bio-inspired autopilots dedicated to flying robots. Optic flow-based visuomotor control systems have been implemented on an increasingly large number of sighted autonomous robots. In this chapter, we present how we designed and constructed local motion sensors and how we implemented bio-inspired visual guidance scheme on-board several micro-aerial vehicles. An hyperacurate sensor in which retinal micro-scanning movements are performed via a small piezo-bender actuator was mounted onto a miniature aerial robot. The OSCAR II robot is able to track a moving target accurately by exploiting the microscan-ning movement imposed to its eye's retina. We also present two interdependent control schemes driving the eye in robot angular position and the robot's body angular position with respect to a visual target but without any knowledge of the robot's orientation in the global frame. This "steering-by-gazing" control strategy, which is implemented on this lightweight (100 g) miniature sighted aerial robot, demonstrates the effectiveness of this biomimetic visual/inertial heading control strategy.

[1]  Christopher E. Neely,et al.  Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle , 2000, SPIE Optics + Photonics.

[2]  D. Nilsson,et al.  Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie , 2007, Journal of Experimental Biology.

[3]  Robert E. Mahony,et al.  Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow , 2012, IEEE Transactions on Robotics.

[4]  Franck Ruffier,et al.  OCTAVE: a bioinspired visuo-motor control system for the guidance of micro-air-vehicles , 2003, SPIE Microtechnologies.

[5]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[6]  R. Gregory,et al.  The Curious Eye of Copilia , 1964, Nature.

[7]  J. Zeil,et al.  Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera) , 2013, Journal of Experimental Biology.

[8]  Steeve Zozor,et al.  Does eye tremor provide the hyperacuity phenomenon? , 2008 .

[9]  Norbert Boeddeker,et al.  Vision and the organization of behaviour , 2008, Current Biology.

[10]  Shih-Chii Liu,et al.  Motion Detection Circuits for a Time-To-Travel Algorithm , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[11]  Thomas J. Mueller,et al.  Optic Flow Sensors for MAV Navigation , 2001 .

[12]  Tobi Delbrück,et al.  Direction Selective Silicon Retina that Uses Null Inhibition , 1991, NIPS.

[13]  M. Srinivasan,et al.  Visual control of flight speed in honeybees , 2005, Journal of Experimental Biology.

[14]  H. Yamasaki,et al.  Velocity based vestibular-visual integration in active sensing system , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[15]  Franck Ruffier,et al.  A mouse sensor and a 2-pixel motion sensor exposed to continuous illuminance changes , 2011, 2011 IEEE SENSORS Proceedings.

[16]  N. Franceschini,et al.  Obstacle avoidance in a terrestrial mobile robot provided with a scanning retina , 1996, Proceedings of Conference on Intelligent Vehicles.

[17]  Takayuki Okatani,et al.  2DOF motion stabilization of biped robot by gaze control strategy , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Nicolas H. Franceschini,et al.  Visually guided micro-aerial vehicle: automatic take off, terrain following, landing and wind reaction , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  Robert J. Wood,et al.  Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Mandyam V. Srinivasan,et al.  Landing Strategies in Honeybees and Applications to Uninhabited Airborne Vehicles , 2004, Int. J. Robotics Res..

[21]  T. Whiteside,et al.  Blur Zone , 1970, Nature.

[22]  Giacomo Indiveri,et al.  Analog VLSI architectures for motion processing: from fundamental limits to system applications , 1996, Proc. IEEE.

[23]  G. Linan,et al.  A bioinspired vision chip architecture for collision detection in automotive applications , 2005, SPIE Microtechnologies.

[24]  Andreas Tünnermann,et al.  Artificial compound eye applying hyperacuity. , 2006, Optics express.

[25]  M. Ibbotson Evidence for velocity–tuned motion-sensitive descending neurons in the honeybee , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Nicolas Franceschini,et al.  TOWARDS AUTOMATIC VISUAL GUIDANCE OF AEROSPACE VEHICLES: FROM INSECTS TO ROBOTS , 2008 .

[27]  F A Miles,et al.  The neural processing of 3‐D visual information: evidence from eye movements , 1998, The European journal of neuroscience.

[28]  Dario Floreano,et al.  Insect-inspired Autonomous Microflyer , 2007 .

[29]  Stéphane Viollet,et al.  Characteristics of Three Miniature Bio-inspired Optic Flow Sensors in Natural Environments , 2010, 2010 Fourth International Conference on Sensor Technologies and Applications.

[30]  H. Collewijn,et al.  Human vestibulo-ocular responses to rapid, helmet-driven head movements , 2004, Experimental Brain Research.

[31]  Steven F. Barrett,et al.  Pre-Blurred Spatial Sampling can Lead to Hyperacuity , 2009, 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop.

[32]  D. N. Lee The optic flow field: the foundation of vision. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  Dale W. Callahan,et al.  A Rationale for the use of Optical Mice Chips for Economic and Accurate Vehicle Tracking , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[34]  Stéphane Viollet,et al.  A sighted aerial robot with fast gaze and heading stabilization , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  F. Ruffier,et al.  Visual motion sensing onboard a 50-g helicopter flying freely under complex VICON-lighting conditions , 2012, 2012 ICME International Conference on Complex Medical Engineering (CME).

[36]  Dario Floreano,et al.  optiPilot: control of take-off and landing using optic flow , 2009 .

[37]  Rahul Sarpeshkar,et al.  An analog VLSI velocity sensor , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[38]  C. Schilstra,et al.  Stabilizing gaze in flying blowflies , 1998, Nature.

[39]  M F Land,et al.  Movements of the retinae of jumping spiders (Salticidae: dendryphantinae) in response to visual stimuli. , 1969, The Journal of experimental biology.

[40]  Michael H Dickinson,et al.  Fly Flight A Model for the Neural Control of Complex Behavior , 2001, Neuron.

[41]  Stéphane Viollet,et al.  A high speed gaze control system based on the Vestibulo-Ocular Reflex , 2005, Robotics Auton. Syst..

[42]  N. Franceschini,et al.  Early processing of colour and motion in a mosaic visual system. , 1985, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[43]  N. Franceschini,et al.  The VODKA Sensor: A Bio-Inspired Hyperacute Optical Position Sensing Device , 2012, IEEE Sensors Journal.

[44]  Dario Floreano,et al.  Autonomous Flight at Low Altitude Using Light Sensors and Little Computational Power , 2010 .

[45]  Karl A. Stol,et al.  Characterisation of Low-cost Optical Flow Sensors , 2010 .

[46]  Robert J. Wood,et al.  Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor , 2012, 2012 IEEE International Conference on Robotics and Automation.

[47]  Nicolas Franceschini,et al.  High performance optical angular position sensing at low-cost: A bio-inspired approach , 2011, 2011 IEEE SENSORS Proceedings.

[48]  Hanspeter A. Mallot,et al.  Insect-Inspired Odometry by Optic Flow Recorded with Optical Mouse Chips , 2010, Flying Insects and Robots.

[49]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[50]  Anatol G. Feldman,et al.  A stretch reflex in extraocular muscles of species purportedly lacking muscle spindles , 2007, Experimental Brain Research.

[51]  Isao Shimoyama,et al.  Visual guidance of a small mobile robot using active, biologically-inspired, eye movements , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[52]  Franck Ruffier,et al.  Controlling docking, altitude and speed in a circular high-roofed tunnel thanks to the optic flow , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  Stéphane Viollet,et al.  Outdoor field performances of insect‐based visual motion sensors , 2011, J. Field Robotics.

[54]  Thomas Netter,et al.  A robotic aircraft that follows terrain using a neuromorphic eye , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[55]  Randolf Menzel,et al.  Insect visual perception: complex abilities of simple nervous systems , 1997, Current Opinion in Neurobiology.

[56]  Stefan Schaal,et al.  Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks , 2001, Neural Networks.

[57]  Mandyam V. Srinivasan,et al.  An Optical System for Guidance of Terrain Following in UAVs , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[58]  Franck Ruffier,et al.  PILOTE AUTOMATIQUE BIOMIMETIQUE Système générique inspiré du contrôle visuomoteur des insectes pour : le décollage, le suivi de terrain, la réaction au vent et l'atterrissage automatiques d'un micro-aéronef , 2004 .

[59]  Stéphane Viollet,et al.  Super-accurate Visual Control of an Aerial Minirobot , 2001 .

[60]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[61]  J P Roll,et al.  High-frequency vestibulo-ocular reflex activation through forced head rotation in man. , 1984, Aviation, space, and environmental medicine.

[62]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[63]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[64]  R. Hengstenberg Mechanosensory control of compensatory head roll during flight in the blowflyCalliphora erythrocephala Meig. , 1988, Journal of Comparative Physiology A.

[65]  S. H. Seidman,et al.  Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli , 1989, Brain Research.

[66]  Nicolas Franceschini,et al.  Visual Guidance Of A Mobile Robot Equipped With A Network Of Self-Motion Sensors , 1990, Other Conferences.

[67]  Ania Mitros,et al.  Visual Sensor with Resolution Enhancement by Mechanical Vibrations , 2001, Auton. Robots.

[68]  Paul A. Viola Neurally Inspired Plasticity in Oculomotor Processes , 1989, NIPS.

[69]  M. Anthony Lewis,et al.  Visual Navigation in a Robot Using Zig-Zag Behavior , 1997, NIPS.

[70]  G N Dutton,et al.  Does extraocular muscle proprioception influence oculomotor control? , 2000, The British journal of ophthalmology.

[71]  Peng Xu,et al.  Analog VLSI Implementation of Wide-field Integration Methods , 2011, J. Intell. Robotic Syst..

[72]  Kaps,et al.  Mechanism and possible behavioural relevance of retinal movements in the ctenid spider Cupiennius salei , 1996, The Journal of experimental biology.

[73]  Stéphane Viollet,et al.  Visual servo system based on a biologically inspired scanning sensor , 1999, Optics East.

[74]  Tobi Delbrück,et al.  Adaptive photoreceptor with wide dynamic range , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[75]  N. Franceschini,et al.  A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities , 2007, Current Biology.

[76]  J. Kennedy,et al.  The migration of the Desert Locust (Schistocerca gregaria Forsk.) I. The behaviour of swarms. II. A theory of long-range migrations , 1951, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[77]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[78]  Cameron H. G. Wright,et al.  Musca domestica inspired machine vision sensor with hyperacuity , 2008, Bioinspiration & biomimetics.

[79]  Max-Olivier Hongler,et al.  The Resonant Retina: Exploiting Vibration Noise to Optimally Detect Edges in an Image , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Stéphane Viollet,et al.  A hyperacute optical position sensor based on biomimetic retinal micro-scanning , 2010 .

[81]  R. Kern,et al.  Visual position stabilization in the hummingbird hawk moth, Macroglossum stellatarum L. II. Electrophysiological analysis of neurons sensitive to wide-field image motion , 1998, Journal of Comparative Physiology A.

[82]  B J Frost,et al.  Eye movements in Daphnia pulex (De Geer). , 1975, The Journal of experimental biology.

[83]  Rogelio Lozano,et al.  An adaptive vision-based autopilot for mini flying machines guidance, navigation and control , 2009, Auton. Robots.

[84]  Nicolas Franceschini,et al.  Bionics of visuo-motor control , 1997 .

[85]  M. Dickinson,et al.  Visual Control of Altitude in Flying Drosophila , 2010, Current Biology.

[86]  Paolo Dario,et al.  Bioinspired velocity control of fast gaze shifts on a robotic anthropomorphic head , 2008, Auton. Robots.

[87]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part II-flight control design , 2006, IEEE Transactions on Robotics.

[88]  E. Niebur From living eyes to seeing machines, M.V. Srinivasan, S. Venkatesh. Oxford University Press (1997), ISBN 0 198 577 850 , 1997 .

[89]  Naoji Shiroma,et al.  Compact image stabilization system using camera posture information , 2008, J. Field Robotics.

[90]  C. H. G. Wright,et al.  A Multiaperture Bioinspired Sensor With Hyperacuity , 2012, IEEE Sensors Journal.

[91]  D. Weihs,et al.  Head stabilization in herons , 2001, Journal of Comparative Physiology A.

[92]  Mandyam V. Srinivasan,et al.  Visual Control of Flight Speed and Height in the Honeybee , 2006, SAB.

[93]  Takayuki Okatani,et al.  The Importance of Gaze Control Mechanism on Vision-based Motion Control of a Biped Robot , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[94]  Roland Hengstenberg,et al.  Biological sensors: Controlling the fly's gyroscopes , 1998, Nature.

[95]  Dario Floreano,et al.  Vision-based control of near-obstacle flight , 2009, Auton. Robots.

[96]  David C. O'Carroll,et al.  Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology , 2009, PLoS Comput. Biol..

[97]  E. L. Keller,et al.  Gain of the vestibulo-ocular reflex in monkey at high rotational frequencies , 1978, Vision Research.

[98]  J.,et al.  Optic Flow , 2014, Computer Vision, A Reference Guide.

[99]  Lei Wei,et al.  Feasibility Study on a Hyperacuity Device With Motion Uncertainty: Two-Point Stimuli , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[100]  R. Steinman,et al.  Voluntary Control of Microsaccades during Maintained Monocular Fixation , 1967, Science.

[101]  Stéphane Viollet,et al.  Steering by Gazing: An Efficient Biomimetic Control Strategy for Visually Guided Micro Aerial Vehicles , 2010, IEEE Transactions on Robotics.

[102]  M. Egelhaaf,et al.  Chasing a dummy target: smooth pursuit and velocity control in male blowflies , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[103]  Heinrich H. Bülthoff,et al.  Behavior-oriented vision for biomimetic flight control , 2002 .

[104]  K. Cullen,et al.  Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in rhesus monkey. , 2002, Journal of neurophysiology.

[105]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[106]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[107]  Stéphane Viollet,et al.  A fully-autonomous hovercraft inspired by bees: Wall following and speed control in straight and tapered corridors , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[108]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[109]  R. Olberg,et al.  Eye movements and target fixation during dragonfly prey-interception flights , 2007, Journal of Comparative Physiology A.

[110]  D. Sandeman,et al.  Eye-scanning during walking in the crabLeptograpsus variegatus , 1978, Journal of comparative physiology.

[111]  Geoffrey L. Barrows,et al.  Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[112]  Eric M. Yeatman,et al.  Use of scanned detection in optical position encoders , 2004, IEEE Transactions on Instrumentation and Measurement.

[113]  Jean-Marc Pichon Guidage visuel d'un robot mobile autonome d'inspiration bionique , 1991 .

[114]  Jean-Paul Laumond,et al.  Steering a humanoid robot by its head , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[115]  Patrick Fabiani,et al.  Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields , 2013, 2013 IEEE International Conference on Robotics and Automation.

[116]  Paul R. Cooper,et al.  The dynamic retina: Contrast and motion detection for active vision , 2005, International Journal of Computer Vision.

[117]  Christof Koch,et al.  A Robust Analog VLSI Motion Sensor Based on the Visual System of the Fly , 1999, Auton. Robots.

[118]  N. Franceschini,et al.  A 1-gram dual sensorless speed governor for micro-air vehicles , 2008, Mediterranean Conference on Control and Automation.

[119]  Robert J. Wood,et al.  An Autonomous Palm-Sized Gliding Micro Air Vehicle , 2007, IEEE Robotics & Automation Magazine.

[120]  Dario Floreano,et al.  Evolving Vision-Based Flying Robots , 2002, Biologically Motivated Computer Vision.

[121]  Fabrizio Mura,et al.  Visual control of altitude and speed in a flying agent , 1994 .

[122]  Ross Wagner,et al.  A fast robotic eye/head system: Eye design and performance , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[123]  Martin Egelhaaf,et al.  The fine structure of honeybee head and body yaw movements in a homing task , 2010, Proceedings of the Royal Society B: Biological Sciences.

[124]  Giulio Sandini,et al.  Divergent stereo in autonomous navigation: From bees to robots , 1995, International Journal of Computer Vision.

[125]  V. VENKATARAMANAN Hard Disk Drive Servo Systems, 2nd Edition , 2008 .

[126]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[127]  Nicolas Franceschini,et al.  Visual guidance based on optic flow: a biorobotic approach , 2004, Journal of Physiology-Paris.

[128]  Mandyam V. Srinivasan,et al.  An image-interpolation technique for the computation of optic flow and egomotion , 1994, Biological Cybernetics.

[129]  Makoto Fujiyoshi Evolutionary Robotics from Intelligent Robots to Artificial Life , 1998 .

[130]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[131]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[132]  F. Ruffier,et al.  Interpolation based “time of travel” scheme in a Visual Motion Sensor using a small 2D retina , 2012, 2012 IEEE Sensors.

[133]  Giulio Sandini,et al.  Learning VOR-like stabilization reflexes in robots , 2000, ESANN.

[134]  Stéphane Viollet,et al.  A novel 1-gram insect based device measuring visual motion along 5 optical directions , 2011, 2011 IEEE SENSORS Proceedings.

[135]  S. Ando,et al.  Ultrafast correlation image sensor: concept, design, and applications , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[136]  Fumiya Iida,et al.  Biologically inspired visual odometer for navigation of a flying robot , 2003, Robotics Auton. Syst..

[137]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .

[138]  Jean-Arcady Meyer,et al.  The Psikharpax project: towards building an artificial rat , 2005, Robotics Auton. Syst..

[139]  Florentin Wörgötter,et al.  Eye Micro-movements Improve Stimulus Detection Beyond the Nyquist Limit in the Peripheral Retina , 2003, NIPS.

[140]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) I. Organization of the Flight Motor , 1986 .

[141]  Richard D. Boyle,et al.  Active Stabilization of Images Acquired on a Walking Robotic Platform , 2006, ISVC.

[142]  Yoko Watanabe,et al.  Simultaneous visual target tracking and navigation in a GPS-denied environment , 2009, 2009 International Conference on Advanced Robotics.

[143]  Stéphane Viollet,et al.  Bio-inspired optical flow circuits for the visual guidance of micro air vehicles , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[144]  Nicolas H. Franceschini,et al.  A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance , 2008, Auton. Robots.

[145]  Roland Hengstenberg,et al.  Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. , 1992, Journal of Comparative Physiology A.

[146]  H. Markl,et al.  Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .

[147]  Giulio Sandini,et al.  Learning visual stabilization reflexes in robots with moving eyes , 2002, Neurocomputing.

[148]  N. Franceschini,et al.  Real time visuomotor control: from flies to robots , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[149]  Charles M. Higgins,et al.  A biologically inspired modular VLSI system for visual measurement of self-motion , 2002 .

[150]  Shih-Chii Liu,et al.  Fly-like visuomotor responses of a robot using aVLSI motion-sensitive chips , 2001, Biological Cybernetics.

[151]  E. Liske,et al.  The influence of head position on the flight behaviour of the fly. Calliphora erythrocephala , 1977 .

[152]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[153]  Nicolas Franceschini,et al.  A bee in the corridor: centering and wall-following , 2008, Naturwissenschaften.

[154]  Timothy W. McLain,et al.  Maximizing miniature aerial vehicles , 2006, IEEE Robotics & Automation Magazine.

[155]  Isao Shimoyama,et al.  A one-chip scanning retina with an integrated micromechanical scanning actuator , 2001 .

[156]  Matthew A. Garratt,et al.  Vision‐based terrain following for an unmanned rotorcraft , 2008, J. Field Robotics.

[157]  Alexa Riehle,et al.  Directionally Selective Motion Detection by Insect Neurons , 1989 .

[158]  A G Pipe,et al.  An adaptive gaze stabilization controller inspired by the vestibulo-ocular reflex , 2008, Bioinspiration & biomimetics.

[159]  I. Shimoyama,et al.  Design and performance of a micro-sized biomorphic compound eye with a scanning retina , 2000, Journal of Microelectromechanical Systems.

[160]  Nicolas H. Franceschini,et al.  Optic flow regulation: the key to aircraft automatic guidance , 2005, Robotics Auton. Syst..

[161]  R. Hetherington The Perception of the Visual World , 1952 .

[162]  Gaurav S. Sukhatme,et al.  Combined optic-flow and stereo-based navigation of urban canyons for a UAV , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[163]  Geoffrey Louis Barrows Mixed-mode VLSI optic flow sensors for micro air vehicles , 1999 .

[164]  Shimon Ullman,et al.  Analysis of Visual Motion by Biological and Computer Systems , 1981, Computer.

[165]  Stéphane Viollet,et al.  Biologically-inspired visual scanning sensor for stabilization and tracking , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[166]  Robert E. Mahony,et al.  A nonlinear terrain-following controller for a VTOL unmanned aerial vehicle using translational optical flow , 2009, 2009 IEEE International Conference on Robotics and Automation.

[167]  James Sean Humbert,et al.  Implementation of wide-field integration of optic flow for autonomous quadrotor navigation , 2009, Auton. Robots.