Understanding the Shape Properties of Trihedral Polyhedra

This paper presents a general framework for the computation of projective invariants of arbitrary degree of freedom (dof) trihedral polyhedra. We show that high dof. figures can be broken down into sets of connected four dof. polyhedra, for which known invariants exist. Although the more general shapes do not possess projective properties as a whole (when viewed by a single camera), each subpart does yield a projective description which is based on the butterfly invariant. Furthermore, planar projective invariants can be measured which link together the subparts, and so we can develop a local-global description for general trihedral polyhedra. We demonstrate the recovery of polyhedral shape descriptions from images by exploiting the local-global nature of the invariants.

[1]  Charlie Rothwell,et al.  Hierarchical Object Description Using Invariants , 1993, Applications of Invariance in Computer Vision.

[2]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Andrew Blake,et al.  The dynamic analysis of apparent contours , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[4]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Long Quan,et al.  Relative 3D Reconstruction Using Multiple Uncalibrated Images , 1995, Int. J. Robotics Res..

[6]  David W. Jacobs,et al.  Model group indexing for recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Alan K. Mackworth Interpreting Pictures of Polyhedral Scenes , 1973, IJCAI.

[8]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[9]  Adolfo Guzmán-Arenas,et al.  Decomposition of a visual scene into three-dimensional bodies , 1968, AFIPS Fall Joint Computing Conference.

[10]  Joseph L. Mundy,et al.  Representing Objects Using Topology , 1996, Object Representation in Computer Vision.

[11]  C. E. Springer,et al.  Geometry and Analysis of Projective Spaces , 1967 .

[12]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[13]  Stefan Carlsson,et al.  The Dou8ble Algebra: An Effective Tool for Computing Invariants in Computer Vision , 1993, Applications of Invariance in Computer Vision.

[14]  S. Sutherland Seeing things , 1989, Nature.

[15]  Charlie Rothwell Object Recognition through Invariant Indexing , 1995 .

[16]  Gil J. Ettinger,et al.  Large hierarchical object recognition using libraries of parameterized model sub-parts , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Rachid Deriche,et al.  Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo Rig , 1994, ECCV.

[18]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[19]  D. W. Thompson,et al.  Three-dimensional model matching from an unconstrained viewpoint , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[20]  David A. Forsyth,et al.  Extracting projective structure from single perspective views of 3D point sets , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[22]  D. Forsyth,et al.  Extracting Projective Information from Single Views of 3D Point Sets , 1993 .

[23]  David W. Murray,et al.  From an image sequence to a recognized polyhedral object , 1988, Image Vis. Comput..

[24]  Akihiro Sugimoto Geometric invariant of noncoplanar lines in a single view , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[25]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[26]  Christopher G. Harris,et al.  Determination of Ego-Motion from Matched Points , 1987, Alvey Vision Conference.

[27]  David A. Forsyth,et al.  3D Object Recognition Using Invariance , 1995, Artif. Intell..

[28]  Rakesh Mohan,et al.  Systematic design of indexing strategies for object recognition , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[29]  K. Sugihara Machine interpretation of line drawings , 1986, MIT Press series in artificial intelligence.

[30]  J. Canny Finding Edges and Lines in Images , 1983 .

[31]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[32]  J. Mundy,et al.  Driving vision by topology , 1995, Proceedings of International Symposium on Computer Vision - ISCV.