On approximation of stable linear dynamical systems using Laguerre and Kautz functions
暂无分享,去创建一个
[1] Morris J. Gottlieb. Concerning Some Polynomials Orthogonal on a Finite or Enumerable Set of Points , 1938 .
[2] I. Horowitz. Synthesis of feedback systems , 1963 .
[3] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[4] Guy Albert Dumont,et al. Laguerre-based adaptive control of pH in an industrial bleach plant extraction stage , 1990, Autom..
[5] Bo Wahlberg,et al. Applications of Kautz Models in System Identification , 1993 .
[6] G. Dumont,et al. Deterministic adaptive control based on Laguerre series representation , 1988 .
[7] J. Partington,et al. Robust approximation and identification in H∞ , 1991, 1991 American Control Conference.
[8] James Rovnyak,et al. Hardy classes and operator theory , 1985 .
[9] W. Huggins,et al. 'Complementary' Signals and Orthogonalized Exponentials , 1962 .
[10] Robert J. McGlinn,et al. A bibliography for approximation with exponential sums , 1978 .
[11] Kenneth Steiglitz,et al. Rational transform approximation via the Laguerre spectrum , 1965 .
[12] P. R. Clement. Applications of generalized laguerre functions , 1985 .
[13] P. M. Mäkilät. Laguerre methods and H ∞ identification of continuous-time systems , 1991 .
[14] O. Bosgra,et al. Approximate system identification using system based orthonormal functions , 1990, 29th IEEE Conference on Decision and Control.
[15] P. Khargonekar,et al. Approximation of infinite-dimensional systems , 1989 .
[16] Graham C. Goodwin,et al. Estimated Transfer Functions with Application to Model Order Selection , 1992 .
[17] Jonathan R. Partington,et al. Approximation of delay systems by fourier-laguerre series , 1991, Autom..
[18] W. Kautz. Transient synthesis in the time domain , 1954 .
[19] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[20] B. Wahlberg. System identification using Laguerre models , 1991 .
[21] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[22] Jonathan R. Partington,et al. Rational approximation of a class of infinite-dimensional systems II: Optimal convergence rates ofL∞ approximants , 1991, Math. Control. Signals Syst..
[23] József Bokor,et al. Identification with generalized orthonormal basis functions - statistical analysis and error bounds , 1994 .
[24] S. Gunnarsson,et al. Some asymptotic results in recursive identification using laguerre models , 1991 .
[25] David C. Lai. Signal processing with orthonormalized exponentials , 1985 .
[26] Yagyensh C. Pati. Wavelets and Time-Frequency Methods in Linear Systems and Neural Networks , 1992 .
[27] M. Schetzen. Power-series equivalence of some functional series with applications , 1970 .
[28] J. W. Head,et al. Approximation to transients by means of Laguerre series , 1956 .
[29] Jonathan R. Partington,et al. Robust approximate modelling of stable linear systems , 1993 .
[30] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[31] Bo Wahlberg,et al. Approximate Modeling by Means of Orthonormal Functions , 1991 .
[32] Okko H. Bosgra,et al. Modelling Linear Dynamical Systems through Generalized Orthonormal Basis Functions , 1993 .
[33] Preston R. Clement. Laguerre Functions in Signal Analysis and Parameter Identification , 1982 .
[34] P. Mäkilä,et al. Approximation of delay systems—a case study , 1991 .
[35] Bo Wahlberg,et al. Parametric Signal Modelling using Laguerre Filters , 1993 .
[36] Bo Wahlberg,et al. Thresholding in high order transfer function estimation , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[37] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[38] P. Henrici. Fast Fourier Methods in Computational Complex Analysis , 1979 .
[39] G. Lorentz. Approximation of Functions , 1966 .
[40] P. N. Paraskevopoulos,et al. Parametric identification of discrete-time SISO systems , 1979 .
[41] W. Huggins,et al. Signal Theory , 1956 .
[42] G. Dumont,et al. An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..
[43] Jerry M. Mendel,et al. A Unified Approach to the Synthesis of Orthonormal Exponential Functions Useful in Systems Analysis , 1966, IEEE Trans. Syst. Sci. Cybern..
[44] L. Ahlfors. Complex Analysis , 1979 .
[45] Guy Albert Dumont,et al. On PID controller tuning using orthonormal series identification , 1988, Autom..
[46] Pertti M. Mäkilä,et al. Laguerre series approximation of infinite dimensional systems , 1990, Autom..
[47] Pertti M. Mäkilä,et al. Approximation of stable systems by laguerre filters , 1990, Autom..
[48] A. C. den Brinker,et al. Adaptive Orthonormal Filters , 1993 .
[49] G. Clowes,et al. Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .
[50] V. E. Benes,et al. Statistical Theory of Communication , 1960 .
[51] L. Wang,et al. Frequency smoothing using Laguerre model , 1992 .
[52] L. Ljung,et al. Hard frequency-domain model error bounds from least-squares like identification techniques , 1992 .
[53] Yuk Lee. Synthesis of electric networks by means of the Fourier tansforms of Laguerre's functions , 1932 .
[54] B. Wahlberg,et al. Constrained predictive control using orthogonal expansions , 1993 .
[55] Petr Beckmann,et al. Orthogonal polynomials for engineers and physicists , 1973 .
[56] William H. Kautz,et al. Network synthesis for specified transient response , 1952 .