On approximation of stable linear dynamical systems using Laguerre and Kautz functions

Approximation of stable linear dynamical systems by means of so-called Laguerre and Kautz functions, which are the Laplace transforms of a class of orthonormal exponentials, is studied. Since the impulse response of a stable finite dimensional linear dynamical system can be represented by a sum of exponentials (times polynomials), it seems reasonable to use basis functions of the same type. Assuming that the transfer function of a system is bounded and analytic outside a given disc, it is shown that Laguerre basis functions are optimal in a mini-max sense. This result is extended to the “two-parameter” Kautz functions which can have complex poles, while the poles of Laguerre functions are restricted to the real axis. By conformai mapping techniques the “two-parameter” Kautz approximation problem is recast as two Laguerre approximation problems. Thus, the well-developed theory of Laguerre functions can be applied to analyze Kautz approximations. Unilateral shifts are used to further develop the connection between Laguerre functions and Kautz functions. Results on þ2 and þ∞ approximation using Kautz models are given. Furthermore, the weighted L2 Kautz approximation problem is shown to be equivalent to solving a block Toeplitz matrix equation.

[1]  Morris J. Gottlieb Concerning Some Polynomials Orthogonal on a Finite or Enumerable Set of Points , 1938 .

[2]  I. Horowitz Synthesis of feedback systems , 1963 .

[3]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[4]  Guy Albert Dumont,et al.  Laguerre-based adaptive control of pH in an industrial bleach plant extraction stage , 1990, Autom..

[5]  Bo Wahlberg,et al.  Applications of Kautz Models in System Identification , 1993 .

[6]  G. Dumont,et al.  Deterministic adaptive control based on Laguerre series representation , 1988 .

[7]  J. Partington,et al.  Robust approximation and identification in H∞ , 1991, 1991 American Control Conference.

[8]  James Rovnyak,et al.  Hardy classes and operator theory , 1985 .

[9]  W. Huggins,et al.  'Complementary' Signals and Orthogonalized Exponentials , 1962 .

[10]  Robert J. McGlinn,et al.  A bibliography for approximation with exponential sums , 1978 .

[11]  Kenneth Steiglitz,et al.  Rational transform approximation via the Laguerre spectrum , 1965 .

[12]  P. R. Clement Applications of generalized laguerre functions , 1985 .

[13]  P. M. Mäkilät Laguerre methods and H ∞ identification of continuous-time systems , 1991 .

[14]  O. Bosgra,et al.  Approximate system identification using system based orthonormal functions , 1990, 29th IEEE Conference on Decision and Control.

[15]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[16]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[17]  Jonathan R. Partington,et al.  Approximation of delay systems by fourier-laguerre series , 1991, Autom..

[18]  W. Kautz Transient synthesis in the time domain , 1954 .

[19]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[20]  B. Wahlberg System identification using Laguerre models , 1991 .

[21]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[22]  Jonathan R. Partington,et al.  Rational approximation of a class of infinite-dimensional systems II: Optimal convergence rates ofL∞ approximants , 1991, Math. Control. Signals Syst..

[23]  József Bokor,et al.  Identification with generalized orthonormal basis functions - statistical analysis and error bounds , 1994 .

[24]  S. Gunnarsson,et al.  Some asymptotic results in recursive identification using laguerre models , 1991 .

[25]  David C. Lai Signal processing with orthonormalized exponentials , 1985 .

[26]  Yagyensh C. Pati Wavelets and Time-Frequency Methods in Linear Systems and Neural Networks , 1992 .

[27]  M. Schetzen Power-series equivalence of some functional series with applications , 1970 .

[28]  J. W. Head,et al.  Approximation to transients by means of Laguerre series , 1956 .

[29]  Jonathan R. Partington,et al.  Robust approximate modelling of stable linear systems , 1993 .

[30]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[31]  Bo Wahlberg,et al.  Approximate Modeling by Means of Orthonormal Functions , 1991 .

[32]  Okko H. Bosgra,et al.  Modelling Linear Dynamical Systems through Generalized Orthonormal Basis Functions , 1993 .

[33]  Preston R. Clement Laguerre Functions in Signal Analysis and Parameter Identification , 1982 .

[34]  P. Mäkilä,et al.  Approximation of delay systems—a case study , 1991 .

[35]  Bo Wahlberg,et al.  Parametric Signal Modelling using Laguerre Filters , 1993 .

[36]  Bo Wahlberg,et al.  Thresholding in high order transfer function estimation , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[37]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[38]  P. Henrici Fast Fourier Methods in Computational Complex Analysis , 1979 .

[39]  G. Lorentz Approximation of Functions , 1966 .

[40]  P. N. Paraskevopoulos,et al.  Parametric identification of discrete-time SISO systems , 1979 .

[41]  W. Huggins,et al.  Signal Theory , 1956 .

[42]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[43]  Jerry M. Mendel,et al.  A Unified Approach to the Synthesis of Orthonormal Exponential Functions Useful in Systems Analysis , 1966, IEEE Trans. Syst. Sci. Cybern..

[44]  L. Ahlfors Complex Analysis , 1979 .

[45]  Guy Albert Dumont,et al.  On PID controller tuning using orthonormal series identification , 1988, Autom..

[46]  Pertti M. Mäkilä,et al.  Laguerre series approximation of infinite dimensional systems , 1990, Autom..

[47]  Pertti M. Mäkilä,et al.  Approximation of stable systems by laguerre filters , 1990, Autom..

[48]  A. C. den Brinker,et al.  Adaptive Orthonormal Filters , 1993 .

[49]  G. Clowes,et al.  Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions , 1965 .

[50]  V. E. Benes,et al.  Statistical Theory of Communication , 1960 .

[51]  L. Wang,et al.  Frequency smoothing using Laguerre model , 1992 .

[52]  L. Ljung,et al.  Hard frequency-domain model error bounds from least-squares like identification techniques , 1992 .

[53]  Yuk Lee Synthesis of electric networks by means of the Fourier tansforms of Laguerre's functions , 1932 .

[54]  B. Wahlberg,et al.  Constrained predictive control using orthogonal expansions , 1993 .

[55]  Petr Beckmann,et al.  Orthogonal polynomials for engineers and physicists , 1973 .

[56]  William H. Kautz,et al.  Network synthesis for specified transient response , 1952 .