The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion

[1]  Tam Mayeshiba,et al.  High-throughput ab-initio dilute solute diffusion database , 2016, Scientific Data.

[2]  D. Morgan,et al.  Factors controlling oxygen migration barriers in perovskites , 2016, 1609.03456.

[3]  Gerbrand Ceder,et al.  An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. , 2016, The Journal of chemical physics.

[4]  Dane Morgan,et al.  Integrated Computational and Experimental Structure Refinement for Nanoparticles. , 2016, ACS nano.

[5]  Tam Mayeshiba,et al.  Correction: Strain effects on oxygen migration in perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[6]  Tam Mayeshiba,et al.  High-throughput ab-initio dilute solute diffusion database , 2016, Scientific Data.

[7]  Patrick Huck,et al.  User applications driven by the community contribution framework MPContribs in the Materials Project , 2015, Concurr. Comput. Pract. Exp..

[8]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[9]  Dane Morgan,et al.  Redox condition in molten salts and solute behavior: A first-principles molecular dynamics study , 2015 .

[10]  Edward O. Pyzer-Knapp,et al.  A Bayesian Approach to Calibrating High-Throughput Virtual Screening Results and Application to Organic Photovoltaic Materials , 2015, 1510.00388.

[11]  Dane Morgan,et al.  Erratum: Ab initio energetics of charge compensating point defects: A case study on MgO (Comput. Mater. Sci. (2013) 73 (41-55)) , 2015 .

[12]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[13]  Shujiang Yang,et al.  Genetic algorithm optimization of defect clusters in crystalline materials , 2015 .

[14]  D. Morgan,et al.  Strain effects on oxygen migration in perovskites. , 2015, Physical chemistry chemical physics : PCCP.

[15]  Tam Mayeshiba,et al.  Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures , 2014 .

[16]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[17]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[18]  Dane Morgan,et al.  Ab initio energetics of charge compensating point defects: A case study on MgO , 2013 .

[19]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[20]  John H. Booske,et al.  Intrinsic defects and conduction characteristics of Sc 2 O 3 in thermionic cathode systems , 2012, 1607.02080.

[21]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[22]  Alex Zunger,et al.  Accurate prediction of defect properties in density functional supercell calculations , 2009 .

[23]  Andreas Höglund,et al.  Density functional theory calculations of defect energies using supercells , 2009 .

[24]  Louis Hennet,et al.  Liquid boron: X-ray measurements and ab initio molecular dynamics simulations , 2009 .

[25]  Nicholas D. M. Hine,et al.  Supercell size scaling of density functional theory formation energies of charged defects , 2009 .

[26]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[27]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[28]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[29]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[30]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[31]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[32]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[33]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[34]  J. R. Manning,et al.  Kinetics of Solute-Enhanced Diffusion in Dilute Face-Centered-Cubic Alloys , 1967 .

[35]  Gerald Estrin,et al.  Experiments on Models of Computations and Systems , 1967, IEEE Trans. Electron. Comput..

[36]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .