Accumulation of GC donor splice signals in mammals

[1]  Liran Carmel,et al.  Ecdysozoan clade rejected by genome-wide analysis of rare amino acid replacements. , 2007, Molecular biology and evolution.

[2]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[3]  Stephen M. Mount,et al.  Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis , 2006, BMC Genomics.

[4]  Zhongming Zhao,et al.  Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome , 2006, BMC Genomics.

[5]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[6]  Lesley Collins,et al.  Complex spliceosomal organization ancestral to extant eukaryotes. , 2005, Molecular biology and evolution.

[7]  R. Guigó,et al.  Comparison of splice sites in mammals and chicken. , 2005, Genome research.

[8]  Gil Ast,et al.  Comparative analysis detects dependencies among the 5' splice-site positions. , 2004, RNA.

[9]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[10]  Abhijit A. Patel,et al.  Splicing double: insights from the second spliceosome , 2003, Nature Reviews Molecular Cell Biology.

[11]  T. Nilsen The spliceosome: the most complex macromolecular machine in the cell? , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Nancy F. Hansen,et al.  Comparative analyses of multi-species sequences from targeted genomic regions , 2003, Nature.

[13]  Melissa S Jurica,et al.  Pre-mRNA splicing: awash in a sea of proteins. , 2003, Molecular cell.

[14]  M. Rosbash,et al.  The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing , 2002, Nature.

[15]  Tracy Farrer,et al.  Analysis of the role of Caenorhabditis elegans GC-AG introns in regulated splicing. , 2002, Nucleic acids research.

[16]  T A Thanaraj,et al.  Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. , 2001, Nucleic acids research.

[17]  V. Solovyev,et al.  Analysis of canonical and non-canonical splice sites in mammalian genomes. , 2000, Nucleic acids research.

[18]  D. Petrov,et al.  Patterns of nucleotide substitution in Drosophila and mammalian genomes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  I. Rogozin,et al.  [Neighboring base effect on emergence of spontaneous mutations in human pseudogenes]. , 1997, Doklady Akademii nauk.

[20]  B. Séraphin,et al.  Who's on first? The U1 snRNP-5' splice site interaction and splicing. , 1991, Trends in biochemical sciences.