The log-dynamic brain: how skewed distributions affect network operations

We often assume that the variables of functional and structural brain parameters — such as synaptic weights, the firing rates of individual neurons, the synchronous discharge of neural populations, the number of synaptic contacts between neurons and the size of dendritic boutons — have a bell-shaped distribution. However, at many physiological and anatomical levels in the brain, the distribution of numerous parameters is in fact strongly skewed with a heavy tail, suggesting that skewed (typically lognormal) distributions are fundamental to structural and functional brain organization. This insight not only has implications for how we should collect and analyse data, it may also help us to understand how the different levels of skewed distributions — from synapses to cognition — are related to each other.

[1]  Ernst Heinrich Weber,et al.  De pulsu, resorptione, auditu et tactu. Annotationes anatomicae et physiologicae , 1834 .

[2]  Ichiji Tasaki,et al.  THE ELECTRO-SALTATORY TRANSMISSION OF THE NERVE IMPULSE AND THE EFFECT OF NARCOSIS UPON THE NERVE FIBER , 1939 .

[3]  J. Hursh CONDUCTION VELOCITY AND DIAMETER OF NERVE FIBERS , 1939 .

[4]  A. L. Koch,et al.  The logarithm in biology. 1. Mechanisms generating the log-normal distribution exactly. , 1966, Journal of theoretical biology.

[5]  A. L. Koch,et al.  The logarithm in biology. II. Distributions simulating the log-normal. , 1969, Journal of theoretical biology.

[6]  J. Winn,et al.  Brain , 1878, The Lancet.

[7]  J. Caldwell,et al.  The size of motor units during post‐natal development of rat lumbrical muscle. , 1979, The Journal of physiology.

[8]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[9]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[10]  T. Drew,et al.  Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. , 1984, The Journal of physiology.

[11]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  T. Curran,et al.  Expression of c-fos protein in brain: metabolic mapping at the cellular level. , 1988, Science.

[13]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  M. J. Friedlander,et al.  The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[16]  T. Poggio,et al.  Multiplying with synapses and neurons , 1992 .

[17]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[18]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[19]  Kristen M. Harris,et al.  Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity , 1993, Trends in Neurosciences.

[20]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[21]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[22]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  N. Logothetis,et al.  Psychophysical and physiological evidence for viewer-centered object representations in the primate. , 1995, Cerebral cortex.

[24]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[25]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[26]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[27]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[28]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[29]  S Dehaene,et al.  A neuronal model of a global workspace in effortful cognitive tasks. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Fechner Elemente der Psychophysik , 1998 .

[31]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[32]  G. Edelman,et al.  Consciousness and Complexity , 1998 .

[33]  Bruce L. McNaughton,et al.  Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles , 1999, Nature Neuroscience.

[34]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[35]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[36]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[37]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[38]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[39]  M. I. Rabinovich,et al.  Dynamical coding of sensory information with competitive networks , 2000, Journal of Physiology-Paris.

[40]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[41]  R. Miller Time and the brain , 2000 .

[42]  W. Freeman,et al.  Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands , 2000, Journal of Neuroscience Methods.

[43]  C. Rampon,et al.  Genetic analysis of learning behavior‐induced structural plasticity , 2000, Hippocampus.

[44]  J. Gold,et al.  Representation of a perceptual decision in developing oculomotor commands , 2000, Nature.

[45]  R. Llinás I of the Vortex: From Neurons to Self , 2000 .

[46]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[47]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[48]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[49]  J. Csicsvari,et al.  Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M Konishi,et al.  Auditory Spatial Receptive Fields Created by Multiplication , 2001, Science.

[51]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[52]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[53]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[54]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[55]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[56]  David M. Santucci,et al.  Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates , 2003, PLoS biology.

[57]  Daniel J. Amit,et al.  Spike-Driven Synaptic Dynamics Generating Working Memory States , 2003, Neural Computation.

[58]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[59]  J. Csicsvari,et al.  Communication between neocortex and hippocampus during sleep in rodents , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[61]  F. Aboitiz,et al.  Long distance communication in the human brain: timing constraints for inter-hemispheric synchrony and the origin of brain lateralization. , 2003, Biological research.

[62]  G. Buzsáki,et al.  Place Representation within Hippocampal Networks Is Modified by Long-Term Potentiation , 2003, Neuron.

[63]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[64]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[65]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[66]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[67]  G. Buzsáki,et al.  Early motor activity drives spindle bursts in the developing somatosensory cortex , 2004, Nature.

[68]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[69]  R. Nieuwenhuys The neocortex , 1994, Anatomy and Embryology.

[70]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[71]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 2004, Experimental Brain Research.

[72]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[73]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[74]  Brendon O. Watson,et al.  Internal Dynamics Determine the Cortical Response to Thalamic Stimulation , 2005, Neuron.

[75]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[76]  M. Andersson,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005 .

[77]  Kenneth D. Harris,et al.  Firing rate modulation: A simple statistical view of memory trace reactivation , 2005, Neural Networks.

[78]  G. Buzsáki Rhythms of the brain , 2006 .

[79]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[80]  E. Rolls,et al.  Decision‐making and Weber's law: a neurophysiological model , 2006, The European journal of neuroscience.

[81]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[82]  Bruce L McNaughton,et al.  Methodological Considerations on the Use of Template Matching to Study Long-Lasting Memory Trace Replay , 2006, The Journal of Neuroscience.

[83]  Peter E. Latham,et al.  A Balanced Memory Network , 2007, PLoS Comput. Biol..

[84]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[85]  Carson C. Chow,et al.  Variability in neuronal activity in primate cortex during working memory tasks , 2007, Neuroscience.

[86]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[87]  John Lisman,et al.  Synaptic Strength of Individual Spines Correlates with Bound Ca2+–Calmodulin-Dependent Kinase II , 2007, The Journal of Neuroscience.

[88]  G. Buzsáki,et al.  Sequential structure of neocortical spontaneous activity in vivo , 2007, Proceedings of the National Academy of Sciences.

[89]  Feng Qi Han,et al.  Reverberation of Recent Visual Experience in Spontaneous Cortical Waves , 2008, Neuron.

[90]  H. Kasai,et al.  Principles of Long-Term Dynamics of Dendritic Spines , 2008, The Journal of Neuroscience.

[91]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[92]  N. Spruston,et al.  Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus , 2008, The Journal of comparative neurology.

[93]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[94]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[95]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[96]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[97]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[98]  Patrick R Hof,et al.  Functional Trade-Offs in White Matter Axonal Scaling , 2008, The Journal of Neuroscience.

[99]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[100]  Judit K. Makara,et al.  Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons , 2009, Nature Neuroscience.

[101]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[102]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[103]  W. Gan,et al.  Dendritic spine dynamics. , 2009, Annual review of physiology.

[104]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[105]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[106]  A. Koulakov,et al.  Correlated Connectivity and the Distribution of Firing Rates in the Neocortex , 2008, The Journal of Neuroscience.

[107]  P. Sterling,et al.  How the Optic Nerve Allocates Space, Energy Capacity, and Information , 2009, The Journal of Neuroscience.

[108]  R. Thatcher,et al.  Self‐organized criticality and the development of EEG phase reset , 2009, Human brain mapping.

[109]  C. Nelson,et al.  Categorical representation of facial expressions in the infant brain. , 2009, Infancy : the official journal of the International Society on Infant Studies.

[110]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[111]  Alison L. Barth,et al.  An Embedded Subnetwork of Highly Active Neurons in the Neocortex , 2010, Neuron.

[112]  O. Sporns Networks of the Brain , 2010 .

[113]  Rainer W. Friedrich,et al.  Olfactory pattern classification by discrete neuronal network states , 2010, Nature.

[114]  Edvard I Moser,et al.  Development of the Spatial Representation System in the Rat , 2010, Science.

[115]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[116]  F. Gage,et al.  Adult neurogenesis: integrating theories and separating functions , 2010, Trends in Cognitive Sciences.

[117]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[118]  Multiplying two numbers together in your head is a difficult task if you did not learn multiplication tables as a child. On the face of it, this is somewhat surprising given the remarkable power of the brain to perform , 2010 .

[119]  Y. Loewenstein,et al.  Multiplicative Dynamics Underlie the Emergence of the Log-Normal Distribution of Spine Sizes in the Neocortex In Vivo , 2011, The Journal of Neuroscience.

[120]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[121]  Matthieu Gilson,et al.  Stability versus Neuronal Specialization for STDP: Long-Tail Weight Distributions Solve the Dilemma , 2011, PloS one.

[122]  C. Barnes,et al.  Age-related changes in Arc transcription and DNA methylation within the hippocampus , 2011, Neurobiology of Aging.

[123]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[124]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[125]  G. Dragoi,et al.  Preplay of future place cell sequences by hippocampal cellular assemblies , 2011, Nature.

[126]  D. Hansel,et al.  On the Distribution of Firing Rates in Networks of Cortical Neurons , 2011, The Journal of Neuroscience.

[127]  Kamran Diba,et al.  Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons , 2012, Hippocampus.

[128]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[129]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[130]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[131]  Olaf Sporns,et al.  Network Analysis of Corticocortical Connections Reveals Ventral and Dorsal Processing Streams in Mouse Visual Cortex , 2012, The Journal of Neuroscience.

[132]  Mike Thelwall,et al.  Lognormal distributions of user post lengths in Internet discussions - a consequence of the Weber-Fechner law? , 2013, EPJ Data Science.

[133]  Rishikesh Narayanan,et al.  Functional maps within a single neuron. , 2012, Journal of neurophysiology.

[134]  Brendon O. Watson,et al.  Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. , 2012, Dialogues in clinical neuroscience.

[135]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[136]  R. Tsien,et al.  Heterogeneous Reallocation of Presynaptic Efficacy in Recurrent Excitatory Circuits Adapting to Inactivity , 2011, Nature Neuroscience.

[137]  E. Halgren,et al.  Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep , 2012, Proceedings of the National Academy of Sciences.

[138]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[139]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[140]  Tomoki Fukai,et al.  Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links , 2012, Scientific Reports.

[141]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[142]  G. Buzsáki,et al.  Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. , 2013, Cell reports.

[143]  Edgar Bermudez Contreras,et al.  Formation and Reverberation of Sequential Neural Activity Patterns Evoked by Sensory Stimulation Are Enhanced during Cortical Desynchronization , 2013, Neuron.

[144]  Rahul Sarpeshkar,et al.  Synthetic analog computation in living cells , 2013, Nature.

[145]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[146]  Nathalie L Rochefort,et al.  Reactivation of the same synapses during spontaneous up states and sensory stimuli. , 2013, Cell reports.

[147]  N. Matsuki,et al.  Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. , 2013, Cerebral cortex.

[148]  Dirk Helbing,et al.  Globally networked risks and how to respond , 2013, Nature.

[149]  Kenji Mizuseki,et al.  Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[150]  Kenji Mizuseki,et al.  Comparison of Sleep Spindles and Theta Oscillations in the Hippocampus , 2014, The Journal of Neuroscience.

[151]  R. Caminiti,et al.  The diameter of cortical axons depends both on the area of origin and target. , 2014, Cerebral cortex.

[152]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[153]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[154]  Yvonne Herz,et al.  Ultra Low Power Bioelectronics Fundamentals Biomedical Applications And Bio Inspired Systems , 2016 .