An improved score interval with a modified midpoint for a binomial proportion

One of the most basic and important problems in statistical inference is the construction of the confidence interval (CI). In this paper, we propose a novel CI for a binomial proportion by modifying the midpoint of the score interval. The proposed modified interval can solve the ‘downward spikes’ problem of the score interval without enlarging the interval length. Simulation studies are carried out to illustrate the performance of the modified interval. With regard to the criterions of coverage probability, mean absolute error and expected length, our method is competitive among the several commonly used methods for constructing a CI. A real data example is also presented to show the application of our method.

[1]  R. Newcombe Two-sided confidence intervals for the single proportion: comparison of seven methods. , 1998, Statistics in medicine.

[2]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[3]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[4]  X.H. Zhou,et al.  Improving interval estimation of binomial proportions , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  C. Blyth,et al.  Binomial Confidence Intervals , 1983 .

[6]  Augustus De Morgan,et al.  On probable Inference , 2014 .

[7]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[8]  S E Vollset,et al.  Confidence intervals for a binomial proportion. , 1994, Statistics in medicine.

[9]  W. J. Langford Statistical Methods , 1959, Nature.

[10]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[11]  Ljup Co Todorovski,et al.  Experiments in Meta-level Learning with Ilp , 1999 .

[12]  T. Tony Cai,et al.  Confidence Intervals for a binomial proportion and asymptotic expansions , 2002 .

[13]  Donald B. Rubin,et al.  Logit-Based Interval Estimation for Binomial Data Using the Jeffreys Prior , 1987 .

[14]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[15]  Yu Guan,et al.  A generalized score confidence interval for a binomial proportion , 2012 .

[16]  Saso Dzeroski,et al.  Experiments in Meta-level Learning with ILP , 1999, PKDD.

[17]  D. Duffy,et al.  Confidence Intervals for a Binomial Parameter Based on Multistage Tests , 1987 .