Suboptimal algorithms for worst case identification in H∞ and model validation

New algorithms based on convex programming are proposed for worst case system identification. The algorithms are optimal within a factor of two asymptotically. Further, model validation, or data consistency, is embedded in the identification process. Explicit worst case identification error bounds in the H/sup /spl infin// norm are also derived for both uniformly and nonuniformly spaced frequency response samples. >

[1]  J. Tsitsiklis,et al.  Optimal asymptotic identification under bounded disturbances , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[2]  Jie Chen,et al.  Worst-case system identification in H∞: validation of apriori information, essentially optimal algorithms, and error bounds , 1992, 1992 American Control Conference.

[3]  G. Zames On the metric complexity of casual linear systems: ε -Entropy and ε -Dimension for continuous time , 1979 .

[4]  Pramod P. Khargonekar,et al.  Parameter identification in the presence of non-parametric dynamic uncertainty , 1990, Autom..

[5]  Guoxiang Gu,et al.  A class of algorithms for identification in H∞ , 1992, Autom..

[6]  K. Poolla,et al.  A time-domain approach to model validation , 1994, IEEE Trans. Autom. Control..

[7]  Guoxiang Gu,et al.  Identification in hH∞ via convex programming , 1993, 1993 American Control Conference.

[8]  Stephen P. Boyd,et al.  Parameter set estimation of systems with uncertain nonparametric dynamics and disturbances , 1990, 29th IEEE Conference on Decision and Control.

[9]  Arthur J. Helmicki,et al.  Identification in H ∞ : linear algorithms , 1990 .

[10]  P. Heywood Trigonometric Series , 1968, Nature.

[11]  Jonathan R. Partington,et al.  Robust identification of strongly stabilizable systems , 1992 .

[12]  Hidenori Kimura,et al.  Time domain identification for robust control , 1993 .

[13]  Zhou,et al.  Identification in H¿ via convex programming , 1993 .

[14]  Jonathan R. Partington,et al.  Interpolation in Normed Spaces from the Values of Linear Functionals , 1994 .

[15]  Guoxiang Gu,et al.  Identification in H8 using Pick's interpolation , 1993 .

[16]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[17]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[18]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[19]  Jonathan R. Partington,et al.  Algorithms for identification in H∞ with unequally spaced function measurements , 1993 .

[20]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[21]  Roy S. Smith,et al.  Towards a Methodology for Robust Parameter Identification , 1990, 1990 American Control Conference.

[22]  Er-Wei Bai,et al.  Adaptive quantification of model uncertainties by rational approximation , 1991 .