On the analysis of independent sets via multilevel splitting

Counting the number of independent sets is an important problem in graph theory, combinatorics, optimization, and social sciences. However, a polynomial-time exact calculation, or even a reasonably close approximation, is widely believed to be impossible, since their existence implies an efficient solution to various problems in the non-deterministic polynomial-time complexity class. To cope with the approximation challenge, we express the independent set counting problem as a rare-event estimation problem. We develop a multilevel splitting algorithm which is generally capable of delivering accurate results, while using a manageable computational effort, even when applied to large graphs. We apply the algorithm to both counting and optimization (finding a maximum independent set) problems, and show that it compares favorably with the existing state of the art.

[1]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[2]  Dirk P. Kroese,et al.  Efficient Monte Carlo simulation via the generalized splitting method , 2012, Stat. Comput..

[3]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[4]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[5]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[6]  Vibhav Gogate,et al.  Sampling-based lower bounds for counting queries , 2011, Intelligenza Artificiale.

[7]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[8]  Gerardo Rubino,et al.  Rare Event Simulation using Monte Carlo Methods , 2009 .

[9]  F. Harary,et al.  A survey of the theory of hypercube graphs , 1988 .

[10]  Vibhav Gogate,et al.  A New Algorithm for Sampling CSP Solutions Uniformly at Random , 2006, CP.

[11]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[12]  E. Kay,et al.  Introductory Graph Theory , 1978 .

[13]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[14]  Xueliang Li,et al.  Clique polynomials and independent set polynomials of graphs , 1994, Discret. Math..

[15]  Randal E. Bryant,et al.  Microprocessor Verification Using Efficient Decision Procedures for a Logic of Equality with Uninterpreted Functions , 1999, TABLEAUX.

[16]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[17]  Peter I. Frazier,et al.  Sequential Sampling with Economics of Selection Procedures , 2012, Manag. Sci..

[18]  A. R. Meyer,et al.  Handbook of Theoretical Computer Science: Algorithms and Complexity , 1990 .

[19]  Vibhav Gogate,et al.  Approximate Counting by Sampling the Backtrack-free Search Space , 2007, AAAI.

[20]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[21]  Reuven Y. Rubinstein,et al.  The Splitting Method for Decision Making , 2012, Commun. Stat. Simul. Comput..

[22]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[23]  Frank Kelly,et al.  Stochastic Models of Computer Communication Systems , 1985 .

[24]  Vangelis Th. Paschos,et al.  Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness , 2005, Theor. Comput. Sci..

[25]  Pierre Del Moral,et al.  Sequential Monte Carlo for rare event estimation , 2012, Stat. Comput..

[26]  Toniann Pitassi,et al.  Combining Component Caching and Clause Learning for Effective Model Counting , 2004, SAT.

[27]  Daniel Kroening,et al.  Decision Procedures - An Algorithmic Point of View , 2008, Texts in Theoretical Computer Science. An EATCS Series.

[28]  Persi Diaconis,et al.  A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees , 2011, Internet Math..

[29]  Daniel Rudoy,et al.  Rare Event Simulation and Counting Problems , 2009, Rare Event Simulation using Monte Carlo Methods.

[30]  R. Rubinstein The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling , 2009 .

[31]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[32]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[33]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[34]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[35]  Luciano Lavagno,et al.  Electronic Design Automation for Integrated Circuits Handbook - 2 Volume Set , 2006 .

[36]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[37]  Zdravko I. Botev,et al.  Sequential Monte Carlo for counting vertex covers in general graphs , 2013, Stat. Comput..

[38]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[39]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[40]  D. Knuth Estimating the efficiency of backtrack programs. , 1974 .

[41]  Vangelis Th. Paschos,et al.  A Bottom-Up Method and Fast Algorithms for max independent set , 2010, SWAT.

[42]  L. Barnett,et al.  Spatially embedded random networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  R. Rubinstein,et al.  On the Use of Smoothing to Improve the Performance of the Splitting Method , 2011 .

[44]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[45]  Patrick Doreian,et al.  Defining and locating cores and boundaries of social networks , 1994 .

[46]  Kerri Morgan,et al.  Certificates of Factorisation for a Class of Triangle-Free Graphs , 2009, Electron. J. Comb..

[47]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[48]  Vadim E. Levit,et al.  The independence polynomial of a graph - a survey , 2005 .

[49]  Ofer Strichman Efficient Decision Procedures for Validation , 2010 .

[50]  P. Dupuis,et al.  Splitting for rare event simulation : A large deviation approach to design and analysis , 2007, 0711.2037.

[51]  Reuven Y. Rubinstein,et al.  Fast Sequential Monte Carlo Methods for Counting and Optimization , 2013 .

[52]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[53]  Paul Dupuis,et al.  The design and analysis of a generalized RESTART/DPR algorithm for rare event simulation , 2011, Ann. Oper. Res..