Visual SLAM Location Methods Based on Complex Scenes: A Review

In recent years, positioning for simple static scenes has been unable to meet the requirements of people’s production and life. People want to achieve accurate positioning in practical scenarios such as airports, exhibition halls and stations. Therefore, the research on visual SLAM positioning in complex dynamic scenes is increasing day by day. This article reviews the research results of SLAM positioning methods and visual SLAM positioning methods for complex scenes in recent years. Firstly, the development process of laser SLAM, visual SLAM, semantic SLAM and multi-sensor fusion is introduced, but the focus is on visual SLAM. Secondly, the paper summarizes the methods of moving object detection and visual SLAM localization in complex dynamic scenes. Then the paper describes the development of deep learning and multi-sensor fusion in visual SLAM positioning based on complex dynamic scenes. Finally, the shortcomings of visual SLAM positioning methods based on complex scenes are summarized and the research prospects are prospected.

[1]  J DavisonAndrew,et al.  Editors Choice Article , 2012 .

[2]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[3]  Pedro Costa,et al.  On the behaviour of low cost laser scanners in HW/SW particle filter SLAM applications , 2016, Robotics Auton. Syst..

[4]  Jason J. Corso,et al.  Spatiotemporal Articulated Models for Dynamic SLAM , 2016, ArXiv.

[5]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[6]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[7]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[8]  Lourdes Agapito,et al.  MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects , 2018, 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[9]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Silvio Savarese,et al.  Semantic structure from motion with points, regions, and objects , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Yuxiang Sun,et al.  Invisibility: A moving-object removal approach for dynamic scene modelling using RGB-D camera , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[12]  Wolfram Burgard,et al.  Efficient Sparse Pose Adjustment for 2D mapping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Yi Deng,et al.  Semi-direct RGB-D slam algorithm for mobile robot In dynamic indoor environments , 2018 .

[14]  Patrick Pérez,et al.  Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[16]  Baoyu Ma,et al.  Fast Scene Reconstruction Based on Improved SLAM , 2019 .

[17]  Daniel Cremers,et al.  Real-Time Dense Geometry from a Handheld Camera , 2010, DAGM-Symposium.

[18]  Andreas Zell,et al.  Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles , 2017, Robotics Auton. Syst..

[19]  Javier Civera,et al.  DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes , 2018, IEEE Robotics and Automation Letters.

[20]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[21]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Wolfgang Hess,et al.  Real-time loop closure in 2D LIDAR SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Jiliu Zhou,et al.  Text Detection and Recognition for Natural Scene Images Using Deep Convolutional Neural Networks , 2019 .

[24]  Aristeidis G. Thallas,et al.  Particle filter — Scan matching hybrid SLAM employing topological information , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[25]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[26]  Yuxiang Sun,et al.  Motion removal for reliable RGB-D SLAM in dynamic environments , 2018, Robotics Auton. Syst..

[27]  Daniel Cremers,et al.  Semi-dense Visual Odometry for a Monocular Camera , 2013, 2013 IEEE International Conference on Computer Vision.

[28]  Torsten Sattler,et al.  Semantic Visual Localization , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Hujun Bao,et al.  Robust monocular SLAM in dynamic environments , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[30]  Marc Pollefeys,et al.  Robust Dense Mapping for Large-Scale Dynamic Environments , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[32]  Binbin Xu,et al.  MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[33]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[34]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[36]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Chen Gang,et al.  Moving Object Detection Method Based on NMI Features Motion Detection Frame Difference , 2012 .

[38]  Yuxiang Sun,et al.  Improving RGB-D SLAM in dynamic environments: A motion removal approach , 2017, Robotics Auton. Syst..

[39]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[40]  Yuanhang Cheng,et al.  A Motion Image Detection Method Based on the Inter-Frame Difference Method , 2014 .

[41]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[42]  Sean L. Bowman,et al.  Probabilistic data association for semantic SLAM , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Zhe Liu,et al.  An Improved Unsupervised Image Segmentation Method Based on Multi-objective Particle Swarm Optimization Clustering Algorithm , 2019, Computers, Materials & Continua.

[44]  Qi Wei,et al.  DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[45]  Seungwon Oh,et al.  Dynamic EKF-based SLAM for autonomous mobile convergence platforms , 2014, Multimedia Tools and Applications.

[46]  Mengyin Fu,et al.  Critical Rays Self-adaptive Particle Filtering SLAM , 2018, J. Intell. Robotic Syst..

[47]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[48]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..