A Simulation Study of Permutation, Bootstrap, and Gene Dropping for Assessing Statistical Significance in the Case of Unequal Relatedness

We used simulations to evaluate methods for assessing statistical significance in association studies. When the statistical model appropriately accounted for relatedness among individuals, unrestricted permutation tests and a few other simulation-based methods effectively controlled type I error rates; otherwise, only gene dropping controlled type I error but at the expense of statistical power.

[1]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[2]  R W Doerge,et al.  Naive Application of Permutation Testing Leads to Inflated Type I Error Rates , 2008, Genetics.

[3]  Bjarni J. Vilhjálmsson,et al.  An efficient multi-locus mixed model approach for genome-wide association studies in structured populations , 2012, Nature Genetics.

[4]  Cornelia M van Duijn,et al.  The effect of genetic drift in a young genetically isolated population. , 2005, Annals of human genetics.

[5]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[6]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.

[7]  R Fisher,et al.  Design of Experiments , 1936 .

[8]  M. Soller,et al.  Advanced intercross lines, an experimental population for fine genetic mapping. , 1995, Genetics.

[9]  J. Witte,et al.  Genetic dissection of complex traits , 1996, Nature Genetics.

[10]  B. Mangin,et al.  Approximate thresholds of interval mapping tests for QTL detection. , 1994, Genetics.

[11]  J. Cheverud,et al.  A simple correction for multiple comparisons in interval mapping genome scans , 2001, Heredity.

[12]  M S McPeek,et al.  Estimation of variance components of quantitative traits in inbred populations. , 2000, American journal of human genetics.

[13]  H. Piepho A quick method for computing approximate thresholds for quantitative trait loci detection. , 2001, Genetics.

[14]  Alun Thomas Comparison of an exact and a simulation method for calculating gene extinction probabilities in pedigrees , 1990 .

[15]  A. Skol,et al.  Fine-mapping alleles for body weight in LG/J × SM/J F2 and F34 advanced intercross lines , 2011, Mammalian Genome.

[16]  Marti J. Anderson,et al.  Permutation tests for multi-factorial analysis of variance , 2003 .

[17]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[18]  Mark Abney,et al.  Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations , 2010, Genetics.

[19]  M. McMullen,et al.  A unified mixed-model method for association mapping that accounts for multiple levels of relatedness , 2006, Nature Genetics.

[20]  Marti J. Anderson,et al.  Permutation tests for univariate or multivariate analysis of variance and regression , 2001 .

[21]  J. Sölkner,et al.  Evaluation of ancestral inbreeding coefficients: Ballou’s formula versus gene dropping , 2006, Conservation Genetics.

[22]  R. W. Morgan,et al.  How to design an experiment. , 1966, Annals of physical medicine.

[23]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[24]  Robert W. Williams,et al.  Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and Permutation for Advanced Intercross Population Analysis , 2008, PloS one.

[25]  F. Dudbridge,et al.  Estimation of significance thresholds for genomewide association scans , 2008, Genetic epidemiology.

[26]  F. Zou,et al.  Assessing the Significance of Quantitative Trait Loci in Replicable Mapping Populations , 2006, Genetics.

[27]  Oliver A. Ryder,et al.  Pedigree analysis by computer simulation , 1986 .

[28]  B. Yandell,et al.  Statistical issues in the analysis of quantitative traits in combined crosses. , 2001, Genetics.

[29]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[30]  V. Moskvina,et al.  On multiple‐testing correction in genome‐wide association studies , 2008, Genetic epidemiology.

[31]  D Siegmund,et al.  Statistical methods for mapping quantitative trait loci from a dense set of markers. , 1999, Genetics.

[32]  William Valdar,et al.  Mapping in Structured Populations by Resample Model Averaging , 2009, Genetics.

[33]  M. McPeek,et al.  Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the Hutterites. , 2002, American journal of human genetics.

[34]  D. Weeks,et al.  Gene‐dropping vs. empirical variance estimation for allele‐sharing linkage statistics , 2006, Genetic epidemiology.

[35]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[36]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .