The Promise of Radio Analytics: A Future Paradigm of Wireless Positioning, Tracking, and Sensing

With the proliferation of Internet of Things (IoT) applications, billions of household appliances, phones, smart devices, security systems, environment sensors, vehicles, buildings, and other radio-connected devices will transmit data and communicate with each other or people, and it will be possible to constantly measure and track virtually everything. Among the various approaches to measuring what is happening in the surrounding environment, wireless sensing has received increasing attention in recent years because of the ubiquitous deployment of wireless radio devices. In addition, human activities affect wireless signal propagation, so understanding and analyzing how these signals react to human activities can reveal rich information about the activities around us.

[1]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[2]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[5]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[6]  Gaetano Borriello,et al.  SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength , 2000 .

[7]  K. Pahlavan,et al.  Comparison of indoor geolocation methods in DSSS and OFDM wireless LAN systems , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[8]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[9]  Ted Kremenek,et al.  A Probabilistic Room Location Service for Wireless Networked Environments , 2001, UbiComp.

[10]  R.J. Fontana,et al.  Ultra-wideband precision asset location system , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[11]  Yilin Zhao,et al.  Standardization of mobile phone positioning for 3G systems , 2002, IEEE Commun. Mag..

[12]  Qicai Shi,et al.  An UWB relative location system , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[13]  G. Lerosey,et al.  Time reversal of electromagnetic waves. , 2004, Physical review letters.

[14]  B. R. Badrinath,et al.  VOR base stations for indoor 802.11 positioning , 2004, MobiCom '04.

[15]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[16]  K.J.R. Liu,et al.  Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs , 2005, IEEE Signal Processing Magazine.

[17]  Pete Steggles,et al.  THE UBISENSE SMART SPACE PLATFORM , 2005 .

[18]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[19]  Chuck Rieger,et al.  PinPoint: An Asynchronous Time-Based Location Determination System , 2006, MobiSys '06.

[20]  O. Boric-Lubecke,et al.  Single-channel receiver limitations in Doppler radar measurements of periodic motion , 2006, 2006 IEEE Radio and Wireless Symposium.

[21]  Timothy B. Stockwell,et al.  The Diploid Genome Sequence of an Individual Human , 2007, PLoS biology.

[22]  José M. F. Moura,et al.  Detection by Time Reversal: Single Antenna , 2007, IEEE Transactions on Signal Processing.

[23]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[24]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[25]  A. Fathy,et al.  Design and Implementation of a Low-Cost Real-Time Ultra-Wide Band See-Through-Wall Imaging Radar System , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[26]  Davrondzhon Gafurov,et al.  A Survey of Biometric Gait Recognition: Approaches, Security and Challenges , 2007 .

[27]  Arun Ross,et al.  An introduction to biometrics , 2008, ICPR 2008.

[28]  Dave Tahmoush,et al.  Radar micro-doppler for long range front-view gait recognition , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[29]  Victor C. Chen,et al.  Analysis of radar human gait signatures , 2010 .

[30]  Arogyaswami Paulraj,et al.  Experimental Investigation on Time Reversal Precoding for Space–Time Focusing in Wireless Communications , 2010, IEEE Transactions on Instrumentation and Measurement.

[31]  K. J. Ray Liu,et al.  Green Wireless Communications: A Time-Reversal Paradigm , 2011, IEEE Journal on Selected Areas in Communications.

[32]  Yi Jiang,et al.  Time Reversal Detection in Clutter: Additional Experimental Results , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Tom Minka,et al.  Precise indoor localization using PHY information , 2011, MobiSys '11.

[34]  Stefan Mangold,et al.  CAESAR: carrier sense-based ranging in off-the-shelf 802.11 wireless LAN , 2011, CoNEXT '11.

[35]  Lu Wang,et al.  FIMD: Fine-grained Device-free Motion Detection , 2012, 2012 IEEE 18th International Conference on Parallel and Distributed Systems.

[36]  Tom Minka,et al.  You are facing the Mona Lisa: spot localization using PHY layer information , 2012, MobiSys '12.

[37]  Srihari Nelakuditi,et al.  SpinLoc: spin once to know your location , 2012, HotMobile '12.

[38]  Yusheng Ji,et al.  Leveraging RF-channel fluctuation for activity recognition: Active and passive systems, continuous and RSSI-based signal features , 2013, MoMM '13.

[39]  Fadel Adib,et al.  See through walls with WiFi! , 2013, SIGCOMM.

[40]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[41]  Paul Congdon,et al.  Avoiding multipath to revive inbuilding WiFi localization , 2013, MobiSys '13.

[42]  Gregory Melia,et al.  Electromagnetic Absorption by the Human Body from 1 - 15 GHz , 2013 .

[43]  Kaishun Wu,et al.  CSI-Based Indoor Localization , 2013, IEEE Transactions on Parallel and Distributed Systems.

[44]  K. J. Ray Liu,et al.  Time-Reversal Wireless Paradigm for Green Internet of Things: An Overview , 2014, IEEE Internet of Things Journal.

[45]  Rob Miller,et al.  3D Tracking via Body Radio Reflections , 2014, NSDI.

[46]  Jie Xiong,et al.  Phaser: enabling phased array signal processing on commodity WiFi access points , 2014, MobiCom.

[47]  Jie Yang,et al.  E-eyes: device-free location-oriented activity identification using fine-grained WiFi signatures , 2014, MobiCom.

[48]  Shaojie Tang,et al.  Electronic frog eye: Counting crowd using WiFi , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[49]  Kaishun Wu,et al.  WiFall: Device-free fall detection by wireless networks , 2017, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[50]  Sneha Kumar Kasera,et al.  Violating privacy through walls by passive monitoring of radio windows , 2014, WiSec '14.

[51]  S. Mao,et al.  PhaseFi: Phase Fingerprinting for Indoor Localization with a Deep Learning Approach , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[52]  Khaled A. Harras,et al.  UbiBreathe: A Ubiquitous non-Invasive WiFi-based Breathing Estimator , 2015, MobiHoc.

[53]  K. J. Ray Liu,et al.  A Time-Reversal Paradigm for Indoor Positioning System , 2015, IEEE Transactions on Vehicular Technology.

[54]  Frédo Durand,et al.  Capturing the human figure through a wall , 2015, ACM Trans. Graph..

[55]  Sachin Katti,et al.  SpotFi: Decimeter Level Localization Using WiFi , 2015, SIGCOMM.

[56]  Dongho Kim,et al.  Bringing CUPID Indoor Positioning System to Practice , 2015, WWW.

[57]  P. Dutta,et al.  DecaWave : Exploring State of the Art Commercial Localization , 2015 .

[58]  Wei Wang,et al.  Understanding and Modeling of WiFi Signal Based Human Activity Recognition , 2015, MobiCom.

[59]  Khaled A. Harras,et al.  WiGest: A ubiquitous WiFi-based gesture recognition system , 2014, 2015 IEEE Conference on Computer Communications (INFOCOM).

[60]  Rob Miller,et al.  Smart Homes that Monitor Breathing and Heart Rate , 2015, CHI.

[61]  Shiwen Mao,et al.  DeepFi: Deep learning for indoor fingerprinting using channel state information , 2015, 2015 IEEE Wireless Communications and Networking Conference (WCNC).

[62]  Jie Liu,et al.  A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned , 2015, IPSN.

[63]  Jie Xiong,et al.  ToneTrack: Leveraging Frequency-Agile Radios for Time-Based Indoor Wireless Localization , 2015, MobiCom.

[64]  Xu Chen,et al.  Tracking Vital Signs During Sleep Leveraging Off-the-shelf WiFi , 2015, MobiHoc.

[65]  Fadel Adib,et al.  Multi-Person Localization via RF Body Reflections , 2015, NSDI.

[66]  K. J. Ray Liu,et al.  Why Time Reversal for Future 5G Wireless? [Perspectives] , 2016, IEEE Signal Processing Magazine.

[67]  Arun Ross,et al.  50 years of biometric research: Accomplishments, challenges, and opportunities , 2016, Pattern Recognit. Lett..

[68]  K. J. Ray Liu,et al.  Indoor Global Positioning System with Centimeter Accuracy Using Wi-Fi [Applications Corner] , 2016, IEEE Signal Processing Magazine.

[69]  K. J. Ray Liu,et al.  Time-Reversal Massive Multipath Effect: A Single-Antenna “Massive MIMO” Solution , 2016, IEEE Transactions on Communications.

[70]  Chunxiao Jiang,et al.  Exploring Spatial Focusing Effect for Spectrum Sharing and Network Association , 2017, IEEE Transactions on Wireless Communications.

[71]  K. J. Ray Liu,et al.  TRIEDS: Wireless Events Detection Through the Wall , 2017, IEEE Internet of Things Journal.

[72]  Yan Chen,et al.  Achieving Centimeter-Accuracy Indoor Localization on WiFi Platforms: A Multi-Antenna Approach , 2017, IEEE Internet of Things Journal.

[73]  Yasuyuki Matsushita,et al.  Detecting State Changes of Indoor Everyday Objects using Wi-Fi Channel State Information , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[74]  K. J. Ray Liu,et al.  A time-reversal spatial hardening effect for indoor speed estimation , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[75]  K. J. Ray Liu,et al.  Achieving Centimeter-Accuracy Indoor Localization on WiFi Platforms: A Frequency Hopping Approach , 2016, IEEE Internet of Things Journal.

[76]  K. J. Ray Liu,et al.  Radio Biometrics: Human Recognition Through a Wall , 2017, IEEE Transactions on Information Forensics and Security.

[77]  K. J. Ray Liu,et al.  Waveforming: An Overview With Beamforming , 2018, IEEE Communications Surveys & Tutorials.

[78]  K. J. Ray Liu,et al.  Statistical Learning Over Time-Reversal Space for Indoor Monitoring System , 2018, IEEE Internet of Things Journal.

[79]  K. J. Ray Liu,et al.  TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection , 2018, IEEE Transactions on Biomedical Engineering.

[80]  K. J. Ray Liu,et al.  WiBall: A Time-Reversal Focusing Ball Method for Decimeter-Accuracy Indoor Tracking , 2017, IEEE Internet of Things Journal.

[81]  K. J. Ray Liu,et al.  WiSpeed: A Statistical Electromagnetic Approach for Device-Free Indoor Speed Estimation , 2017, IEEE Internet of Things Journal.