A hybrid systems approach toward modeling and dynamical simulation of dextrous manipulation

This paper presents an approach toward comprehensive discrete-continuous modeling and accurate dynamical simulation of dextrous manipulation. The resulting hybrid-state model integrates time-driven mechanical features of manipulation systems as well as their discrete-event aspects resulting from varying contact situations. It can easily be embedded into sophisticated simulation environments. A MATLAB implementation serves us as a tool for mechatronic control design for grasping systems. Results from dynamical simulations of a four-fingered hand grasping and manipulating an object demonstrate the efficiency and high accuracy of our approach.

[1]  M. Buss,et al.  A discrete-continuous control architecture for dextrous manipulation , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[2]  Martin Buss,et al.  Multi-fingered regrasping using on-line grasping force optimization , 1997, Proceedings of International Conference on Robotics and Automation.

[3]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[4]  Alberto Bemporad,et al.  A Framework for Control, State Estimation, Fault Detection, and Verification of Hybrid Systems , 1999 .

[5]  Wolfgang Paetsch,et al.  Exemplarische Untersuchungen zu mehrfingrigen Robotergreifern: Aufbau — Regelung — Systemintegration , 1993 .

[6]  Nilanjan Sarkar,et al.  A discrete-event systems approach to modeling dextrous manipulation , 1996, Robotica.

[7]  Toru Omata,et al.  Fast dextrous re-grasping with optimal contact forces and contact sensor-based impedance control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[8]  Hong Liu,et al.  DLR-Hand II: next generation of a dextrous robot hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Hong Liu,et al.  A new control strategy for DLR's multisensory articulated hand , 1999 .

[10]  Yunhui Liu,et al.  Simulating dextrous manipulation of a multi-fingered robot hand based on a unified dynamic model , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  Peter K. Allen,et al.  GraspIt!: A Versatile Simulator for Grasp Analysis , 2000, Dynamic Systems and Control: Volume 2.

[12]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[13]  James H. Taylor,et al.  MODELING AND SIMULATION OF HYBRID SYSTEMS IN MATLAB , 1996 .

[14]  T. Omata,et al.  Reorientation planning for a multifingered hand based on orientation states network using regrasp primitives , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[15]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[16]  Vijay Kumar,et al.  Dynamic simulation for grasping and whole arm manipulation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Oussama Khatib,et al.  A framework for multi-contact multi-body dynamic simulation and haptic display , 2000 .

[18]  Sebastian Engell,et al.  Modellierung und Analyse hybrider dynamischer Systeme , 1997 .

[19]  Th. Schlegl,et al.  Diskret-kontinuierliche Regelung mehrfingriger Roboterhände zur robusten Manipulation von Objekten , 2002 .

[20]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .