A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices

In this paper, we present a square-root inverse sliding window filter (SR-ISWF) for vision-aided inertial navigation systems (VINS). While regular inverse filters suffer from numerical issues, employing their square-root equivalent enables the usage of single-precision number representations, thus achieving considerable speed ups as compared to doubleprecision alternatives on resource-constrained mobile platforms. Besides a detailed description of the SR-ISWF for VINS, which focuses on the numerical procedures that enable exploiting the problem’s structure for gaining in efficiency, this paper presents a thorough validation of the algorithm’s processing requirements and achieved accuracy. In particular, experiments are conducted using a commercial-grade cell phone, where the proposed algorithm is shown to achieve the same level of estimation accuracy, when compared to state-of-the-art VINS algorithms, with significantly higher speed.

[1]  Stergios I. Roumeliotis,et al.  C-KLAM: Constrained keyframe-based localization and mapping , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Roland Siegwart,et al.  Robust Real-Time Visual Odometry with a Single Camera and an IMU , 2011, BMVC.

[3]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[4]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[5]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Supun Samarasekera,et al.  Robust vision-aided navigation using Sliding-Window Factor graphs , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Stergios I. Roumeliotis,et al.  A dual-layer estimator architecture for long-term localization , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[9]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[10]  Anastasios I. Mourikis,et al.  Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  N. Trawny,et al.  Indirect Kalman Filter for 3 D Attitude Estimation , 2005 .

[13]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[14]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[15]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[16]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[17]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[18]  Anastasios I. Mourikis,et al.  Optimization-Based Estimator Design for Vision-Aided Inertial Navigation , 2012, Robotics: Science and Systems.

[19]  Dimitrios G. Kottas,et al.  An iterative Kalman smoother for robust 3D localization on mobile and wearable devices , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Anastasios I. Mourikis,et al.  Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  Gaurav S. Sukhatme,et al.  Sliding window filter with application to planetary landing , 2010, J. Field Robotics.

[22]  Dimitrios G. Kottas,et al.  Efficient Visual-Inertial Navigation using a Rolling-Shutter Camera with Inaccurate Timestamps , 2014, Robotics: Science and Systems.

[23]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..