On the performance of wavelength meters: Part 1—consequences for medium-to-high-resolution laser spectroscopy

[1]  W. Nörtershäuser,et al.  On the performance of wavelength meters: Part 2—frequency-comb based characterization for more accurate absolute wavelength determinations , 2020, Applied Physics B.

[2]  S. Braccini,et al.  High-resolution laser resonance ionization spectroscopy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{143-147}$ , 2020, The European Physical Journal A.

[3]  B. Cheal,et al.  Upgrades to the collinear laser spectroscopy experiment at the IGISOL , 2020 .

[4]  T. Cocolios,et al.  A new control system for high-precision In-Gas Laser Ionization and Spectroscopy experiments at KU Leuven , 2020 .

[5]  J. Billowes,et al.  Precision measurements of the charge radii of potassium isotopes , 2019, Physical Review C.

[6]  W. Nörtershäuser,et al.  Collinear laser spectroscopy at ion-trap accuracy: Transition frequencies and isotope shifts in the 6s2S1/2→6p2P1/2,3/2 transitions in Ba+ , 2019, Physical Review A.

[7]  D. Reynaerts,et al.  Characterization of Supersonic Gas Jets for High-Resolution Laser Ionization Spectroscopy of Heavy Elements , 2018, Physical Review X.

[8]  V. Manea,et al.  Characterization of the shape-staggering effect in mercury nuclei , 2018, Nature Physics.

[9]  C. Geppert,et al.  High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy , 2018 .

[10]  M. Weidemüller,et al.  Laser frequency stabilization using a commercial wavelength meter. , 2018, The Review of scientific instruments.

[11]  Klaus Wendt,et al.  High-resolution in-source laser spectroscopy in perpendicular geometry , 2017 .

[12]  K. Wendt,et al.  Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper , 2017 .

[13]  K. Flanagan,et al.  Collinear laser spectroscopy at ISOLDE: new methods and highlights , 2017 .

[14]  T. Thomas,et al.  Photoelectron recoil in CO in the x-ray region up to 7 keV , 2017 .

[15]  G. Neyens,et al.  Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states , 2017, 1704.03875.

[16]  J. Piot,et al.  Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion , 2017, Nature Communications.

[17]  K. Wendt,et al.  High resolution spectroscopy of the hyperfine structure splitting in 97,99Tc , 2017 .

[18]  Khaldoun Saleh,et al.  Frequency stability of a wavelength meter and applications to laser frequency stabilization. , 2015, Applied optics.

[19]  Iain Moore,et al.  Towards commissioning the new IGISOL-4 facility , 2013 .

[20]  K. Wendt,et al.  High Resolution-Resonance Ionization Spectroscopy on uranium , 2013 .

[21]  Y. Kudryavtsev,et al.  The in-gas-jet laser ion source: resonance ionization spectroscopy of radioactive atoms in supersonic gas jets , 2012, 1211.6649.

[22]  Klaus Blaum,et al.  Precision atomic physics techniques for nuclear physics with radioactive beams , 2012, 1210.4045.

[23]  I. Moore,et al.  Determination of the ground-state hyperfine structure in neutral 229Th , 2012 .

[24]  Valentin Fedosseev,et al.  Resonance laser ionization of atoms for nuclear physics , 2012 .

[25]  V. N. Fedosseev,et al.  A complementary laser system for ISOLDE RILIS , 2011 .

[26]  P. Vingerhoets,et al.  Nuclear structure of Cu isotopes studied with collinear laser spectroscopy. , 2011 .

[27]  B. Varcoe,et al.  Absolute frequency measurements of 85RbnF7/2 Rydberg states using purely optical detection , 2010, 1002.3066.

[28]  B. Varcoe,et al.  Precision measurements of quantum defects in the nP3/2 Rydberg states of 85Rb , 2009, 0905.0571.

[29]  K. Wendt,et al.  Ultra Trace Determination Scheme for 26 Al by High-Resolution Resonance Ionization Mass Spectrometry using a Pulsed Ti:Sapphire Laser , 2008 .

[30]  S. Raeder,et al.  An injection-seeded high-repetition rate Ti:Sapphire laser for high-resolution spectroscopy and trace analysis of rare isotopes , 2008 .

[31]  B. Tordoff,et al.  The shape transition in the neutron-rich yttrium isotopes and isomers , 2007 .

[32]  Jesse E. Simsarian,et al.  A computer-based digital feedback control of frequency drift of multiple lasers , 1998 .

[33]  G. Hermann,et al.  Hyperfine structures and isotopic shifts of the Cu D1 and D2 lines measured by high-resolution laser fluorescence spectroscopy with a collimated atomic beam , 1993 .

[34]  J. Ney,et al.  Hyperfeinstrukturanomalie und Kernquadrupolwechselwirkungskonstanten des angeregten 3d94s 4p4P3/2-Terms im Cu I-Spektram von Cu63 und Cu65 , 1967 .

[35]  Kevin M. Lynch,et al.  Analysis of counting data: Development of the SATLAS Python package , 2018, Comput. Phys. Commun..

[36]  M. Pearson,et al.  Laser spectroscopy for nuclear structure physics , 2016 .