Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain

In this paper we present a visual navigation algorithm for the six-legged walking robot DLR Crawler in rough terrain. The algorithm is based on stereo images from which depth images are computed using the semi-global matching (SGM) method. Further, a visual odometry is calculated along with an error measure. Pose estimates are obtained by fusing inertial data with relative leg odometry and visual odometry measurements using an indirect information filter. The visual odometry error measure is used in the filtering process to put lower weights on erroneous visual odometry data, hence, improving the robustness of pose estimation. From the estimated poses and the depth images, a dense digital terrain map is created by applying the locus method. The traversability of the terrain is estimated by a plane fitting approach and paths are planned using a D* Lite planner taking the traversability of the terrain and the current motion capabilities of the robot into account. Motion commands and the traversability measures of the upcoming terrain are sent to the walking layer of the robot so that it can choose an appropriate gait for the terrain. Experimental results show the accuracy of the navigation algorithm and its robustness against visual disturbances.

[1]  Robert C. Bolles,et al.  Outdoor Mapping and Navigation Using Stereo Vision , 2006, ISER.

[2]  Heiko Hirschmüller,et al.  Multisensor data fusion for robust pose estimation of a six-legged walking robot , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[4]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[5]  Jonathan M. Garibaldi,et al.  Fast, unconstrained camera motion estimation from stereo without tracking and robust statistics , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[6]  H. Hirschmüller Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Stereo Processing by Semi-global Matching and Mutual Information , 2022 .

[7]  Heiko Hirschmüller,et al.  Stereo camera based navigation of mobile robots on rough terrain , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Takeo Kanade,et al.  High resolution terrain map from multiple sensor data , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[9]  Heiko Hirschmüller,et al.  Stereo vision based mapping and immediate virtual walkthroughs , 2003 .

[10]  Gerd Hirzinger,et al.  The DLR Crawler: evaluation of gaits and control of an actively compliant six-legged walking robot , 2009, Ind. Robot.

[11]  Stefan K. Gehrig,et al.  A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching , 2009, ICVS.

[12]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[13]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[14]  Gerd Hirzinger,et al.  The DLR-Crawler: A testbed for actively compliant hexapod walking based on the fingers of DLR-Hand II , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Stergios I. Roumeliotis,et al.  Stochastic cloning: a generalized framework for processing relative state measurements , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Sven Koenig,et al.  Improved fast replanning for robot navigation in unknown terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[18]  Larry Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers: Field Reports , 2007 .

[19]  John G. Harris,et al.  Autonomous cross-country navigation with the ALV , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[20]  Gaurav S. Sukhatme,et al.  Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[21]  Alonzo Kelly,et al.  An intelligent, predictive control approach to the high-speed cross-country autonomous navigation problem , 1996 .

[22]  Larry H. Matthies,et al.  An autonomous path planner implemented on the Rocky 7 prototype microrover , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  Hugh F. Durrant-Whyte,et al.  The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications , 2001, IEEE Trans. Robotics Autom..

[24]  Ines Ernst,et al.  Mutual Information Based Semi-Global Stereo Matching on the GPU , 2008, ISVC.

[25]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[27]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[29]  T.T. Nguyen,et al.  Experiences with operations and autonomy of the Mars Pathfinder Microrover , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[30]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[31]  Alfred A. Rizzi,et al.  Autonomous navigation for BigDog , 2010, 2010 IEEE International Conference on Robotics and Automation.

[32]  A. Stentz,et al.  Global Path Planning on Board the Mars Exploration Rovers , 2007, 2007 IEEE Aerospace Conference.

[33]  Hugh F. Durrant-Whyte,et al.  Data association for mobile robot navigation: a graph theoretic approach , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[34]  J. Bortz A New Mathematical Formulation for Strapdown Inertial Navigation , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Heiko Hirschmüller,et al.  Evaluation of Stereo Matching Costs on Images with Radiometric Differences , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[37]  Carlos Silvestre,et al.  Inertial Navigation System Aided by GPS and Selective Frequency Contents of Vector Measurements , 2005 .

[38]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[39]  L. Chrisman,et al.  Obstacle Avoidance and Safeguarding for a Lunar Rover , 1996 .

[40]  J. Loch,et al.  Reactive Navigation through Rough Terrain: Experimental Results , 1992, AAAI.

[41]  Martin Görner,et al.  Towards an Autonomous Walking Robot for Planetary Surfaces , 2010 .