A quantitative theory of immediate visual recognition.

[1]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[2]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[3]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Lior Wolf,et al.  Perception Strategies in Hierarchical Vision Systems , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  T. Poggio,et al.  Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex , 2006, Neuron.

[7]  Tomaso Poggio,et al.  Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines , 2006 .

[8]  David J. Freedman,et al.  Cortex: Neurophysiology and Behavior Visual Categorization and the Primate Prefrontal , 2006 .

[9]  M. A. Repucci,et al.  Responses of V1 neurons to two-dimensional hermite functions. , 2006, Journal of neurophysiology.

[10]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[11]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[12]  Martin A. Giese,et al.  Learning Features of Intermediate Complexity for the Recognition of Biological Motion , 2005, ICANN.

[13]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[14]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  S. Thorpe,et al.  The time course of visual processing: Backward masking and natural scene categorisation , 2005, Vision Research.

[16]  Leslie G. Valiant,et al.  Memorization and Association on a Realistic Neural Model , 2005, Neural Computation.

[17]  Ronald A. Rensink,et al.  Change blindness: past, present, and future , 2005, Trends in Cognitive Sciences.

[18]  Lior Wolf,et al.  A Unified System For Object Detection, Texture Recognition, and Context Analysis Based on the Standard Model Feature Set , 2005, BMVC.

[19]  Tomaso Poggio,et al.  Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. , 2004, Journal of neurophysiology.

[20]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[21]  T. Poggio,et al.  Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex , 2004 .

[22]  Thomas Serre,et al.  Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex , 2004 .

[23]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[24]  Doris Y. Tsao,et al.  Complex and dynamic receptive field structure in macaque cortical area V4d , 2004 .

[25]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[26]  G. Elston Comparative studies of pyramidal neurons in visual cortex of monkeys , 2004 .

[27]  T. Sato,et al.  Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques , 2004, Experimental Brain Research.

[28]  N. Matsumoto,et al.  Characteristics of the tooth pulp-driven neurons in a functional column of the cat's somatosensory cortex (SI) , 2004, Experimental Brain Research.

[29]  J. K. Hietanen,et al.  The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex , 2004, Experimental Brain Research.

[30]  Y. Amit,et al.  An integrated network for invariant visual detection and recognition , 2003, Vision Research.

[31]  J. Kaas,et al.  The Primate visual system , 2003 .

[32]  G. Rousselet,et al.  Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. , 2003, Journal of vision.

[33]  Heiko Wersing,et al.  Learning Optimized Features for Hierarchical Models of Invariant Object Recognition , 2003, Neural Computation.

[34]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[35]  C. Koch,et al.  Visual Selective Behavior Can Be Triggered by a Feed-Forward Process , 2003, Journal of Cognitive Neuroscience.

[36]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[37]  Simon J. Thorpe,et al.  Ultra-Rapid Scene Categorization with a Wave of Spikes , 2002, Biologically Motivated Computer Vision.

[38]  T. Gawne,et al.  Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. , 2002, Journal of neurophysiology.

[39]  T. Gawne,et al.  Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. , 2002, Journal of neurophysiology.

[40]  David J. Freedman,et al.  Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. , 2002, Journal of neurophysiology.

[41]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[42]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[43]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. L. de Valois,et al.  Cartesian and non-Cartesian responses in LGN, V1, and V2 cells , 2001, Visual Neuroscience.

[45]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[46]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[47]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[48]  P. Fldik,et al.  The Speed of Sight , 2001, Journal of Cognitive Neuroscience.

[49]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[50]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[51]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[52]  J. Enns,et al.  What’s new in visual masking? , 2000, Trends in Cognitive Sciences.

[53]  G Richard,et al.  Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans , 2000, Vision Research.

[54]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[55]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[56]  E. Rolls,et al.  The Neurophysiology of Backward Visual Masking: Information Analysis , 1999, Journal of Cognitive Neuroscience.

[57]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[58]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[59]  C. Gross Brain, Vision, Memory: Tales in the History of Neuroscience , 1998 .

[60]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[61]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[62]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[63]  J. Wolfe,et al.  Preattentive Object Files: Shapeless Bundles of Basic Features , 1997, Vision Research.

[64]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[65]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[66]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[67]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[68]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[69]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[70]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[71]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[74]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[75]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[76]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[77]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[78]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[79]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[80]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[81]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[82]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[84]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[85]  M. Potter Meaning in visual search. , 1975, Science.

[86]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[87]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.