Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions.

Uniform core-shell Pd@IRMOF-3 nanostructures, where single Pd nanoparticle core is surrounded by amino-functionalized IRMOF-3 shell, are prepared by a facile mixed solvothermal method. When used as multifunctional catalysts, the Pd@IRMOF-3 nanocomposites exhibit high activity, enhanced selectivity, and excellent stability in the cascade reaction. Both experimental evidence and theoretical calculations reveal that the high catalytic performance of Pd@IRMOF-3 nanocomposites originates from their unique core-shell structures.

[1]  L. Liz‐Marzán,et al.  Catalysis by metallic nanoparticles in aqueous solution: model reactions. , 2012, Chemical Society reviews.

[2]  Zipeng Zhao,et al.  Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. , 2012, Journal of the American Chemical Society.

[3]  X. Lou,et al.  Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[4]  Ilkeun Lee,et al.  Core-shell nanostructured catalysts. , 2013, Accounts of chemical research.

[5]  Jianfang Wang,et al.  Porous single-crystalline palladium nanoparticles with high catalytic activities. , 2012, Angewandte Chemie.

[6]  N. R. Shiju,et al.  Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions** , 2011, Angewandte Chemie.

[7]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[8]  Tianyu Yang,et al.  Yolk–Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation , 2012 .

[9]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[10]  Xianzhi Fu,et al.  A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst , 2011 .

[11]  C. Serre,et al.  An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis. , 2006, Chemical communications.

[12]  M. S. El-shall,et al.  Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101† , 2009 .

[13]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[14]  T. Akita,et al.  Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. , 2011, Journal of the American Chemical Society.

[15]  P. Günter,et al.  Structure-Activity Relationship of New Organic NLO Materials Based on Push-Pull Azodyes. 1. Synthesis and molecular properties of the dyes , 1998 .

[16]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[17]  N. Phan,et al.  Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst , 2012 .

[18]  X. Lou,et al.  Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. , 2012, Journal of the American Chemical Society.

[19]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[20]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[21]  S. Kitagawa,et al.  Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. , 2013, Journal of the American Chemical Society.

[22]  V. S. Lin,et al.  Bifunctionalized mesoporous materials with site-separated Brønsted acids and bases: catalyst for a two-step reaction sequence. , 2011, Angewandte Chemie.

[23]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[24]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[25]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[26]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[27]  Luis M Liz-Marzán,et al.  Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials , 2010, Advanced materials.

[28]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[29]  G. Férey,et al.  Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. , 2010, Journal of the American Chemical Society.

[30]  Xiaobo Li,et al.  A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. , 2012, Angewandte Chemie.

[31]  Zhiyong Tang,et al.  Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. , 2013, Angewandte Chemie.

[32]  Tierui Zhang,et al.  Permeable silica shell through surface-protected etching. , 2008, Nano letters.

[33]  Yusuke Yamada,et al.  Nanocrystal bilayer for tandem catalysis. , 2011, Nature chemistry.

[34]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[35]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[36]  D. T. McQuade,et al.  Organic reaction systems: using microcapsules and microreactors to perform chemical synthesis. , 2013, Accounts of chemical research.

[37]  Z. Tang,et al.  Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols , 2010 .

[38]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[39]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[40]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[41]  Jun Song Chen,et al.  Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. , 2011, Chemical communications.

[42]  Genqiang Zhang,et al.  Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. , 2013, Chemical communications.

[43]  N. Zheng,et al.  Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. , 2012, ACS nano.

[44]  Ilkeun Lee,et al.  Diffusion through the shells of yolk-shell and core-shell nanostructures in the liquid phase. , 2012, Angewandte Chemie.