Classical and quantum geometric information flows and entanglement of relativistic mechanical systems
暂无分享,去创建一个
[1] L. Aolita,et al. Open-system dynamics of entanglement:a key issues review , 2014, Reports on progress in physics. Physical Society.
[2] S. Vacaru,et al. Axiomatic formulations of modified gravity theories with nonlinear dispersion relations and Finsler–Lagrange–Hamilton geometry , 2018, The European Physical Journal C.
[3] S. Vacaru,et al. Black holes with MDRs and Bekenstein–Hawking and Perelman entropies for Finsler–Lagrange–Hamilton Spaces , 2018, Annals of Physics.
[4] A. Lichnerowicz. Proof of the Strong Subadditivity of Quantum-Mechanical Entropy , 2018 .
[5] Ovidiu Cristinel Stoica,et al. Revisiting the Black Hole Entropy and the Information Paradox , 2018, Advances in High Energy Physics.
[6] H. Umegaki. CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II , 1954 .
[7] Salman Beigi,et al. Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.
[8] C. Vafa,et al. Microscopic origin of the Bekenstein-Hawking entropy , 1996, hep-th/9601029.
[9] D. Friedan,et al. NONLINEAR MODELS IN 2 +<-DIMENSIONS , 1980 .
[10] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[11] J. Morgan,et al. Ricci Flow and the Poincare Conjecture , 2006, math/0607607.
[12] E. Witten. APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory , 2018, Reviews of Modern Physics.
[13] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[14] A. Rényi. On Measures of Entropy and Information , 1961 .
[15] R. Ionicioiu. Schrödinger's Cat: Where Does The Entanglement Come From? , 2016, 1603.07986.
[16] L. Susskind,et al. Cool horizons for entangled black holes , 2013, 1306.0533.
[17] Stephen W. Hawking,et al. Particle Creation by Black Holes , 1993, Resonance.
[18] V. Vedral. The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.
[19] S. Vacaru,et al. Perelman's W--entropy and Statistical and Relativistic Thermodynamic Description of Gravitational Fields , 2013 .
[20] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[21] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .
[22] Elliott H. Lieb,et al. Entropy inequalities , 1970 .
[23] T. Takayanagi,et al. Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.
[24] Nonholonomic Ricci flows. II. Evolution equations and dynamics , 2007, math/0702598.
[25] The entropy of Lagrange-Finsler spaces and Ricci flows , 2007, math/0701621.
[26] Matthew B Hastings,et al. Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.
[27] S. Vacaru,et al. On supersymmetric geometric flows and R2 inflation from scale invariant supergravity , 2016, 1606.06884.
[28] C. Ecker. Entanglement Entropy from Numerical Holography , 2018, 1809.05529.
[29] S. Vacaru. Spectral Functionals, Nonholonomic Dirac Operators, and Noncommutative Ricci Flows , 2008, 0806.3814.
[30] S. Yau,et al. Surveys in Differential Geometry , 1999 .
[31] T. Takayanagi,et al. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.
[32] W. Thirring,et al. FROM RELATIVE ENTROPY TO ENTROPY , 1985 .
[33] Sergey N. Solodukhin,et al. Entanglement Entropy of Black Holes , 2011, Living reviews in relativity.
[34] B. Chow,et al. The Ricci flow on surfaces , 2004 .
[35] Edward Witten,et al. A mini-introduction to information theory , 2018, La Rivista del Nuovo Cimento.
[36] S. Vacaru. Geometric information flows and G. Perelman entropy for relativistic classical and quantum mechanical systems , 2019, The European Physical Journal C.
[37] Dong Yang,et al. Strong converse for the classical capacity of entanglement-breaking channels , 2013, ArXiv.
[38] A. Serafini,et al. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. , 2012, Physical review letters.
[39] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[40] E. Witten. Notes on Some Entanglement Properties of Quantum Field Theory , 2018, 1803.04993.
[41] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[42] A. Zeilinger,et al. Going Beyond Bell’s Theorem , 2007, 0712.0921.
[43] J. Bekenstein. Black Holes and Entropy , 1973, Jacob Bekenstein.
[44] Locally Anisotropic Kinetic Processes and Thermodynamics in Curved Spaces , 2000, gr-qc/0001060.
[45] George Ruppeiner,et al. Riemannian geometry in thermodynamic fluctuation theory , 1995 .
[46] R. Hamilton,et al. The formations of singularities in the Ricci Flow , 1993 .
[47] J. Bekenstein,et al. Black holes and the second law , 2019, Jacob Bekenstein.
[48] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .
[49] H. Quevedo. Black hole geometrothermodynamics , 2017 .
[50] Karol Zyczkowski,et al. Rényi Extrapolation of Shannon Entropy , 2003, Open Syst. Inf. Dyn..
[51] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[52] Topological Entanglement Entropy from the Holographic Partition Function , 2006, cond-mat/0609072.
[53] G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.
[54] Brandon Carter,et al. The four laws of black hole mechanics , 1973 .
[55] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[56] B. Swingle,et al. Entanglement Renormalization and Holography , 2009, 0905.1317.
[57] S. Vacaru,et al. Exact solutions for E. Verlinde emergent gravity and generalized G. Perelman entropy for geometric flows , 2019, 1904.05149.
[58] Huai-Dong Cao,et al. A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .
[59] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[60] S. Vacaru,et al. Geometric Flows and Perelman's Thermodynamics for Black Ellipsoids in $R^2$ and Einstein Gravity Theories , 2016, 1602.08512.
[61] T. Nishioka. Entanglement entropy: Holography and renormalization group , 2018, Reviews of Modern Physics.
[62] John Preskill,et al. Topological entanglement entropy. , 2005, Physical Review Letters.
[63] S. Vacaru. Entropy functionals for nonholonomic geometric flows, quasiperiodic Ricci solitons, and emergent gravity , 2019, 1903.04920.
[64] S. Vacaru. Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces , 2010, 1010.0647.
[65] Richard S. Hamilton,et al. The Ricci flow on surfaces , 1986 .
[66] Bruce Kleiner,et al. Notes on Perelman's papers , 2006 .
[67] Mark Van Raamsdonk. Building up spacetime with quantum entanglement , 2010 .
[68] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.