Holographic algorithms: From art to science

We develop the theory of holographic algorithms initiated by Leslie Valiant. First we define a basis manifold. Then we characterize algebraic varieties of realizable symmetric generators and recognizers on the basis manifold, and give a polynomial time decision algorithm for the simultaneous realizability problem. These results enable one to decide whether suitable signatures for a holographic algorithm are realizable, and if so, to find a suitable linear basis to realize these signatures by an efficient algorithm. Using the general machinery we are able to give unexpected holographic algorithms for some counting problems, modulo certain Mersenne type integers. These counting problems are #P-complete without the moduli. Going beyond symmetric signatures, we define d-admissibility and d-realizability for general signatures, and give a characterization of 2-admissibility and some general constructions of admissible and realizable families.

[1]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[2]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[3]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[4]  Peng Zhang,et al.  Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..

[5]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[6]  Jin-Yi Cai,et al.  Holographic algorithms with unsymmetric signatures , 2008, SODA '08.

[7]  Leslie G. Valiant Expressiveness of matchgates , 2002, Theor. Comput. Sci..

[8]  G. Sposito,et al.  Graph theory and theoretical physics , 1969 .

[9]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[10]  A. S. Hedayat,et al.  On Theory and Applications of BIB Designs with Repeated Blocks. , 1977 .

[11]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[12]  Jin-Yi Cai,et al.  Holographic algorithms: The power of dimensionality resolved , 2009, Theor. Comput. Sci..

[13]  Jin-Yi Cai,et al.  Signature Theory in Holographic Algorithms , 2008, ISAAC.

[14]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[15]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Computational Complexity Conference.

[16]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[17]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and Matchgate Tensors , 2006, TAMC.

[18]  Jin-Yi Cai,et al.  Some Results on Matchgates and Holographic Algorithms , 2007, Int. J. Softw. Informatics.

[19]  Jirí Matousek,et al.  A Combinatorial Proof of Kneser’s Conjecture* , 2004, Comb..

[20]  Jin-Yi Cai,et al.  On Symmetric Signatures in Holographic Algorithms , 2009, Theory of Computing Systems.

[21]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[22]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[23]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[24]  Shuo-Yen Robert Li,et al.  On the Structure of t-Designs , 1980, SIAM J. Algebraic Discret. Methods.

[25]  Leslie G. Valiant,et al.  Accidental Algorithms , 2006, FOCS.

[26]  Kazuo Murota,et al.  Matrices and Matroids for Systems Analysis , 2000 .

[27]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[28]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[29]  Jin-Yi Cai,et al.  Basis Collapse in Holographic Algorithms , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[30]  A. Hedayat,et al.  Note: Correction to "On Theory and Application of BIB Designs with Repeated Blocks" , 1979 .

[31]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[32]  Nathan Linial,et al.  Incidence Matrices of Subsets—A Rank Formula , 1981 .