SPH-Based Fluid Simulation: A Survey

This paper presents an up-to-date survey on the application of Smoothed Particle Hydrodynamics (SPH) method in fluid simulation. As a pure Lagrangian method, it has a wide range of applications in computer graphics. We summarize it from key issues of kernel function, neighborhood search, boundary conditions, time integral to algorithm application in diverse fluids, including bubble, fluid-solid interaction, multiphase flow and mixed flow. We also discuss the hotspots area, including adaptive sampling, flow control, surface rendering and accelerating algorithm. In experiment section, we show four different animation scenes based on the survey algorithm in our platform. In the end, we point out the potential problems and prospects for future work.

[1]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[2]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[3]  Donald H. House,et al.  Adaptive particles for incompressible fluid simulation , 2008, The Visual Computer.

[4]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[5]  Omar M. Knio,et al.  SPH Modelling of Water Waves , 2001 .

[6]  Paul W. Cleary,et al.  Bubbling and frothing liquids , 2007, ACM Trans. Graph..

[7]  Tsuyoshi Hamada,et al.  Astrophysical hydrodynamics simulations on a reconfigurable system , 2005, 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'05).

[8]  Chang-Hun Kim,et al.  Interchangeable SPH and level set method in multiphase fluids , 2009, The Visual Computer.

[9]  C. Ancey,et al.  Improved SPH methods for simulating free surface flows of viscous fluids , 2009 .

[10]  Guillermo Marcus Martinez,et al.  Accelerating astrophysical particle simulations with programmable hardware (FPGA and GPU) , 2009, Computer Science - Research and Development.

[11]  Tomoyuki Nishita,et al.  Reviews on Physically Based Controllable Fluid Animation , 2010 .

[12]  Renato Pajarola,et al.  Adaptive Sampling and Rendering of Fluids on the GPU , 2008, VG/PBG@SIGGRAPH.

[13]  Markus H. Gross,et al.  A hardware processing unit for point sets , 2008, GH '08.

[14]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[15]  Robert Bridson,et al.  Fluid Simulation , 2008 .

[16]  N Thuerey,et al.  Detail-preserving fluid control , 2009, SCA '06.

[17]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  Christopher S. Co,et al.  Isosurface Generation for Large-Scale Scattered Data Visualization , 2005 .

[19]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[20]  Nadia Magnenat-Thalmann,et al.  Modeling Dynamic Hair as a Continuum , 2001, Comput. Graph. Forum.

[21]  Frédéric H. Pighin,et al.  Modeling and editing flows using advected radial basis functions , 2004, SCA '04.

[22]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[23]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[24]  Matthias Teschner,et al.  Corotated SPH for Deformable Solids , 2009, NPH.

[25]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[26]  Bülent Özgüç,et al.  GPU-Based Neighbor-Search Algorithm for Particle Simulations , 2009, J. Graphics, GPU, & Game Tools.

[27]  Chang-Hun Kim,et al.  Hybrid Simulation of Miscible Mixing with Viscous Fingering , 2010, Comput. Graph. Forum.

[28]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[29]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[30]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[31]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[32]  Feng Ying Lin Smoothed particle hydrodynamics , 2005 .

[33]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, SIGGRAPH 2007.

[34]  Rüdiger Westermann,et al.  Efficient High-Quality Volume Rendering of SPH Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[35]  Renato Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, ACM Trans. Graph..

[36]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[37]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Real-time Simulations of Bubbles and Foam within a Shallow Water Framework , 2022 .

[38]  Richard Keiser,et al.  Multiresolution particle-based fluids , 2006 .

[39]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[40]  Zhi Yuan,et al.  Enhancing fluid animation with adaptive, controllable and intermittent turbulence , 2010, SCA '10.

[41]  Marie-Paule Cani,et al.  Space-Time Adaptive Simulation of Highly Deformable Substances , 1999 .

[42]  Gavin S. P. Miller,et al.  Particle-Based Fluid Simulation on the GPU , 2006, International Conference on Computational Science.

[43]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[44]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[45]  Xi Chen,et al.  Real-time adaptive fluid simulation with complex boundaries , 2010, The Visual Computer.

[46]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[47]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[48]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[49]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[50]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[51]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[52]  Christian Terboven,et al.  Exploiting Multicore Architectures for Physically Based Simulation of Deformable Objects in Virtual Environments , 2007 .

[53]  B. Adams,et al.  Porous flow in particle-based fluid simulations , 2008, SIGGRAPH 2008.

[54]  P. Wróblewski,et al.  SPH - a comparison of neighbor search methods based on constant number of neighbors and constant cut-off radius , 2007 .

[55]  Mark J. Harris Fast fluid dynamics simulation on the GPU , 2005, SIGGRAPH Courses.

[56]  Marie-Paule Cani,et al.  Animating Lava Flows , 1999, Graphics Interface.

[57]  Kei Iwasaki,et al.  GPU-based rendering of point-sampled water surfaces , 2008, The Visual Computer.

[58]  Ronald Fedkiw,et al.  Fluid simulation: SIGGRAPH 2006 course notes (Fedkiw and Muller-Fischer presenation videos are available from the citation page) , 2006, SIGGRAPH Courses.

[59]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[60]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[61]  Xi Chen,et al.  Real‐time fluid simulation with adaptive SPH , 2009, Comput. Animat. Virtual Worlds.

[62]  Rüdiger Westermann,et al.  Realistic and interactive simulation of rivers , 2006, Graphics Interface.

[63]  David Le Touzé,et al.  An Hamiltonian interface SPH formulation for multi-fluid and free surface flows , 2009, J. Comput. Phys..

[64]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[65]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[66]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .