Structural Optimization for Stiffness and Ductility of High-Rise Buildings

Several practical tools for the characterization of the optimal layout of material in a structure have been developed in recent years based on both numerical and analytical approaches. Within the analytical methods, optimal layouts can be based on specific geometric rules recently investigated in the literature. The resulting designs represents a stiff structure which requires ductile elements placed at strategic locations to minimize the impact of an extreme seismic event on the structure itself. This presentation will highlight a methodology to combine stiff optimal geometrical layouts with the use of ductile links in a high-rise building.

[1]  Cezary Graczykowski,et al.  Michell cantilevers constructed within trapezoidal domains—Part I: geometry of Hencky nets , 2006 .

[2]  William F. Baker,et al.  Geometrical aspects of optimum truss like structures , 2011 .

[3]  G. Rozvany,et al.  Exact analytical solutions for some popular benchmark problems in topology optimization II: three-sided polygonal supports , 2007 .

[4]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[5]  Sujin Bureerat,et al.  Multi-objective topology optimization using evolutionary algorithms , 2011 .

[6]  Juhani Koski,et al.  Multicriteria Design Optimization , 1990 .

[7]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[8]  Anders Klarbring,et al.  An Introduction to Structural Optimization , 2008 .

[9]  Egor P. Popov,et al.  Seismic eccentrically braced frames , 1988 .

[10]  Ting-Yu Chen,et al.  Multiobjective optimal topology design of structures , 1998 .

[11]  W. Achtziger,et al.  Topology Optimization of Discrete Structures , 1997 .

[12]  Salam Rahmatalla,et al.  Form Finding of Sparse Structures with Continuum Topology Optimization , 2003 .

[13]  Cezary Graczykowski,et al.  Michell cantilevers constructed within trapezoidal domains—Part II: virtual displacement fields , 2006 .

[14]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[15]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[16]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[17]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[18]  Tam H. Nguyen,et al.  A computational paradigm for multiresolution topology optimization (MTOP) , 2010 .

[19]  A.S.L. Chan,et al.  The Design of Michell Optimum Structures , 1960 .

[20]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[21]  G. Rozvany Some shortcomings in Michell's truss theory , 1996 .

[22]  Osvaldo M. Querin,et al.  Growth method for size, topology, and geometry optimization of truss structures , 2006 .

[23]  Yi Min Xie,et al.  Evolutionary Topology Optimization of Continuum Structures: Methods and Applications , 2010 .

[24]  Glaucio H. Paulino,et al.  Topology optimization for braced frames: Combining continuum and beam/column elements , 2012 .

[25]  P. Dewhurst,et al.  A general boundary approach to the construction of Michell truss structures , 2009 .

[26]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[27]  Peter Dewhurst,et al.  Analytical solutions and numerical procedures for minimum-weight Michell structures , 2001 .

[28]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[29]  Claude Fleury,et al.  A primal-dual approach in truss topology optimization , 1997 .

[30]  William F. Baker Energy-Based Design of Lateral Systems , 1992 .

[31]  Lotfi A. Zadeh,et al.  Optimality and non-scalar-valued performance criteria , 1963 .