An introduction to sampling via measure transport

We present the fundamentals of a measure transport approach to sampling. The idea is to construct a deterministic coupling---i.e., a transport map---between a complex "target" probability measure of interest and a simpler reference measure. Given a transport map, one can generate arbitrarily many independent and unweighted samples from the target simply by pushing forward reference samples through the map. We consider two different and complementary scenarios: first, when only evaluations of the unnormalized target density are available, and second, when the target distribution is known only through a finite collection of samples. We show that in both settings the desired transports can be characterized as the solutions of variational problems. We then address practical issues associated with the optimization--based construction of transports: choosing finite-dimensional parameterizations of the map, enforcing monotonicity, quantifying the error of approximate transports, and refining approximate transports by enriching the corresponding approximation spaces. Approximate transports can also be used to "Gaussianize" complex distributions and thus precondition conventional asymptotically exact sampling schemes. We place the measure transport approach in broader context, describing connections with other optimization--based samplers, with inference and density estimation schemes using optimal transport, and with alternative transformation--based approaches to simulation. We also sketch current work aimed at the construction of transport maps in high dimensions, exploiting essential features of the target distribution (e.g., conditional independence, low-rank structure). The approaches and algorithms presented here have direct applications to Bayesian computation and to broader problems of stochastic simulation.

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[3]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[4]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[5]  M. R. Adams,et al.  Measure Theory and Probability , 1986 .

[6]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[7]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[8]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[9]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[10]  W. Gautschi Orthogonal polynomials: applications and computation , 1996, Acta Numerica.

[11]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[12]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[13]  J. Ramsay Estimating smooth monotone functions , 1998 .

[14]  Hagai Attias,et al.  Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.

[15]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[16]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[17]  Michael I. Jordan,et al.  Bayesian parameter estimation via variational methods , 2000, Stat. Comput..

[18]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[19]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[20]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[21]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[22]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[23]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[24]  H. Thode Testing For Normality , 2002 .

[25]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[26]  Testing for Normality with Censored Data , 2002 .

[27]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[28]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[29]  Xiao-Li Meng,et al.  Warp Bridge Sampling , 2002 .

[30]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[31]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[32]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[33]  C. Villani Topics in Optimal Transportation , 2003 .

[34]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[35]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[36]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[37]  P. Bernard,et al.  Optimal mass transportation and Mather theory , 2004, math/0412299.

[38]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[39]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[40]  G. Loeper,et al.  Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .

[41]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[42]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[43]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[44]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[45]  C. Villani Optimal Transport: Old and New , 2008 .

[46]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[47]  Roger Ghanem,et al.  Characterization of reservoir simulation models using a polynomial chaos‐based ensemble Kalman filter , 2009 .

[48]  Guillaume Carlier,et al.  From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..

[49]  Sudhir R. Ghorpade,et al.  A Course in Multivariable Calculus and Analysis , 2009 .

[50]  A. Chorin,et al.  Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.

[51]  A course in multivariable calculus and analysis / Sudhir R. Ghorpade, Balmohan V. Limaye , 2010 .

[52]  Matthias Morzfeld,et al.  Implicit particle filters for data assimilation , 2010, 1005.4002.

[53]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[54]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[55]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[56]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[57]  S. Rounds,et al.  Controls on biochemical oxygen demand in the upper Klamath River, Oregon , 2010 .

[58]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[59]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[60]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[61]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[62]  Stephen J. Roberts,et al.  A tutorial on variational Bayesian inference , 2012, Artificial Intelligence Review.

[63]  Michael G. Paulin,et al.  Editorial: One Year as EiC, and Editorial-Board Changes at TNN , 2011, IEEE Trans. Neural Networks.

[64]  Valero Laparra,et al.  Iterative Gaussianization: From ICA to Random Rotations , 2011, IEEE Transactions on Neural Networks.

[65]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[66]  L. Pascale,et al.  The Monge problem in ${\mathbb R}^d$ , 2011 .

[67]  A. Chorin,et al.  Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation , 2011, 1109.3664.

[68]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[69]  Hermann G. Matthies,et al.  Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..

[70]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[71]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[72]  Matthias Morzfeld,et al.  A random map implementation of implicit filters , 2011, J. Comput. Phys..

[73]  Sebastian Reich,et al.  A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..

[74]  Rui Ma,et al.  Efficient Bayesian inference methods via convex optimization and optimal transport , 2013, 2013 IEEE International Symposium on Information Theory.

[75]  Dirk Helbing,et al.  Modelling and Optimisation of Flows on Networks , 2013 .

[76]  A. Chorin,et al.  Implicit Particle Methods and Their Connection with Variational Data Assimilation , 2012, 1205.1830.

[77]  E. Tabak,et al.  A Family of Nonparametric Density Estimation Algorithms , 2013 .

[78]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[79]  Nicolas Bonnotte,et al.  From Knothe's Rearrangement to Brenier's Optimal Transport Map , 2012, SIAM J. Math. Anal..

[80]  Hermann G. Matthies,et al.  Uncertainty Quantification and Non-Linear Bayesian Update of PCE Coefficients , 2013 .

[81]  H. Matthies,et al.  Inverse problems and uncertainty quantification , 2013, 1312.5048.

[82]  Matthias Morzfeld,et al.  Small-noise analysis and symmetrization of implicit Monte Carlo samplers , 2014 .

[83]  Ben Calderhead,et al.  A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.

[84]  Tiangang Cui,et al.  Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.

[85]  Heikki Haario,et al.  Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[86]  Esteban G. Tabak,et al.  Constrained Density Estimation , 2014 .

[87]  Matthew Parno,et al.  Transport maps for accelerated Bayesian computation , 2015 .

[88]  Johannes Müller,et al.  Parametrization of Random Vectors in Polynomial Chaos Expansions via Optimal Transportation , 2015, SIAM J. Sci. Comput..

[89]  Lester W. Mackey,et al.  Measuring Sample Quality with Stein's Method , 2015, NIPS.

[90]  Hermann G. Matthies,et al.  Inverse Problems in a Bayesian Setting , 2015, 1511.00524.

[91]  Matthias Morzfeld,et al.  Parameter estimation by implicit sampling , 2013, 1308.4640.

[92]  Tiangang Cui,et al.  Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..

[93]  Lazhi Wang Methods in Monte Carlo Computation, Astrophysical Data Analysis and Hypothesis Testing with Multiply-Imputed Data , 2015 .

[94]  Esteban G. Tabak,et al.  Data‐Driven Optimal Transport , 2016 .

[95]  Youssef M. Marzouk,et al.  A Multiscale Strategy for Bayesian Inference Using Transport Maps , 2015, SIAM/ASA J. Uncertain. Quantification.

[96]  Tiangang Cui,et al.  Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..

[97]  Youssef Marzouk,et al.  Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.