An introduction to sampling via measure transport
暂无分享,去创建一个
[1] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[2] D. Cox,et al. An Analysis of Transformations , 1964 .
[3] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[4] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[5] M. R. Adams,et al. Measure Theory and Probability , 1986 .
[6] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[7] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[8] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[9] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[10] W. Gautschi. Orthogonal polynomials: applications and computation , 1996, Acta Numerica.
[11] H. Wackernagle,et al. Multivariate geostatistics: an introduction with applications , 1998 .
[12] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[13] J. Ramsay. Estimating smooth monotone functions , 1998 .
[14] Hagai Attias,et al. Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.
[15] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[16] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[17] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[18] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[19] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[20] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[21] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[22] James Renegar,et al. A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.
[23] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[24] H. Thode. Testing For Normality , 2002 .
[25] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[26] Testing for Normality with Censored Data , 2002 .
[27] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[28] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[29] Xiao-Li Meng,et al. Warp Bridge Sampling , 2002 .
[30] Alexander Shapiro,et al. The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..
[31] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[32] Steven Haker,et al. Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..
[33] C. Villani. Topics in Optimal Transportation , 2003 .
[34] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[35] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[36] H. Kushner,et al. Stochastic Approximation and Recursive Algorithms and Applications , 2003 .
[37] P. Bernard,et al. Optimal mass transportation and Mather theory , 2004, math/0412299.
[38] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[39] A. Üstünel,et al. Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .
[40] G. Loeper,et al. Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .
[41] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[42] Darren J. Wilkinson. Stochastic Modelling for Systems Biology , 2006 .
[43] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[44] James C. Spall,et al. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .
[45] C. Villani. Optimal Transport: Old and New , 2008 .
[46] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[47] Roger Ghanem,et al. Characterization of reservoir simulation models using a polynomial chaos‐based ensemble Kalman filter , 2009 .
[48] Guillaume Carlier,et al. From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..
[49] Sudhir R. Ghorpade,et al. A Course in Multivariable Calculus and Analysis , 2009 .
[50] A. Chorin,et al. Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.
[51] A course in multivariable calculus and analysis / Sudhir R. Ghorpade, Balmohan V. Limaye , 2010 .
[52] Matthias Morzfeld,et al. Implicit particle filters for data assimilation , 2010, 1005.4002.
[53] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[54] O. François,et al. Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.
[55] Allen R. Tannenbaum,et al. An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..
[56] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[57] S. Rounds,et al. Controls on biochemical oxygen demand in the upper Klamath River, Oregon , 2010 .
[58] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[59] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[60] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[61] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[62] Stephen J. Roberts,et al. A tutorial on variational Bayesian inference , 2012, Artificial Intelligence Review.
[63] Michael G. Paulin,et al. Editorial: One Year as EiC, and Editorial-Board Changes at TNN , 2011, IEEE Trans. Neural Networks.
[64] Valero Laparra,et al. Iterative Gaussianization: From ICA to Random Rotations , 2011, IEEE Transactions on Neural Networks.
[65] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[66] L. Pascale,et al. The Monge problem in ${\mathbb R}^d$ , 2011 .
[67] A. Chorin,et al. Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation , 2011, 1109.3664.
[68] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[69] Hermann G. Matthies,et al. Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..
[70] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[71] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[72] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[73] Sebastian Reich,et al. A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..
[74] Rui Ma,et al. Efficient Bayesian inference methods via convex optimization and optimal transport , 2013, 2013 IEEE International Symposium on Information Theory.
[75] Dirk Helbing,et al. Modelling and Optimisation of Flows on Networks , 2013 .
[76] A. Chorin,et al. Implicit Particle Methods and Their Connection with Variational Data Assimilation , 2012, 1205.1830.
[77] E. Tabak,et al. A Family of Nonparametric Density Estimation Algorithms , 2013 .
[78] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[79] Nicolas Bonnotte,et al. From Knothe's Rearrangement to Brenier's Optimal Transport Map , 2012, SIAM J. Math. Anal..
[80] Hermann G. Matthies,et al. Uncertainty Quantification and Non-Linear Bayesian Update of PCE Coefficients , 2013 .
[81] H. Matthies,et al. Inverse problems and uncertainty quantification , 2013, 1312.5048.
[82] Matthias Morzfeld,et al. Small-noise analysis and symmetrization of implicit Monte Carlo samplers , 2014 .
[83] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[84] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[85] Heikki Haario,et al. Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[86] Esteban G. Tabak,et al. Constrained Density Estimation , 2014 .
[87] Matthew Parno,et al. Transport maps for accelerated Bayesian computation , 2015 .
[88] Johannes Müller,et al. Parametrization of Random Vectors in Polynomial Chaos Expansions via Optimal Transportation , 2015, SIAM J. Sci. Comput..
[89] Lester W. Mackey,et al. Measuring Sample Quality with Stein's Method , 2015, NIPS.
[90] Hermann G. Matthies,et al. Inverse Problems in a Bayesian Setting , 2015, 1511.00524.
[91] Matthias Morzfeld,et al. Parameter estimation by implicit sampling , 2013, 1308.4640.
[92] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[93] Lazhi Wang. Methods in Monte Carlo Computation, Astrophysical Data Analysis and Hypothesis Testing with Multiply-Imputed Data , 2015 .
[94] Esteban G. Tabak,et al. Data‐Driven Optimal Transport , 2016 .
[95] Youssef M. Marzouk,et al. A Multiscale Strategy for Bayesian Inference Using Transport Maps , 2015, SIAM/ASA J. Uncertain. Quantification.
[96] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[97] Youssef Marzouk,et al. Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.