Sensory context for coding of natural sounds in auditory cortex

6 Accurate sound perception can require integrating information over hundreds of milliseconds or even 7 seconds. Spectro-temporal models of sound coding by single neurons in auditory cortex indicate that the 8 majority of sound-evoked activity can be attributed to stimuli with a few tens of milliseconds. It remains 9 uncertain how the auditory system integrates information about sensory context on a longer timescale. Here 10 we characterized long-lasting contextual effects in auditory cortex (AC) using a diverse set of natural sound 11 stimuli. We measured context effects as the difference in a neuron’s response to a single probe sound 12 following two different context sounds. Many AC neurons showed context effects lasting longer than the 13 temporal window of a traditional spectro-temporal receptive field. The duration and magnitude of context 14 effects varied substantially across neurons and stimuli. This diversity of context effects formed a sparse 15 code across the neural population that encoded a wider range of contexts than any constituent neuron. 16 Encoding model analysis indicates that context effects can be explained by activity in the local neural 17 population, suggesting that recurrent local circuits support a long-lasting representation of sensory context 18 in auditory cortex.

[1]  H. Adesnik,et al.  The logic of recurrent circuits in the primary visual cortex , 2022, bioRxiv.

[2]  Jonathan I. Benichov,et al.  High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons , 2022, Nature Communications.

[3]  Stephen V. David,et al.  Can deep learning provide a generalizable model for dynamic sound encoding in auditory cortex? , 2022, bioRxiv.

[4]  Tohar S. Yarden,et al.  Context-Dependent Inhibitory Control of Stimulus-Specific Adaptation , 2022, The Journal of Neuroscience.

[5]  T. R. Barkat,et al.  Inhibition in the auditory cortex , 2021, Neuroscience & Biobehavioral Reviews.

[6]  Daniel P. Mossing,et al.  Synthesis of a comprehensive population code for contextual features in the awake sensory cortex , 2021, eLife.

[7]  R. S. Williamson,et al.  Inverted central auditory hierarchies for encoding local intervals and global temporal patterns , 2021, Current Biology.

[8]  Kenneth D. Harris,et al.  Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings , 2020, Science.

[9]  Robert J. Zatorre,et al.  Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody , 2020, Science.

[10]  Nicholas A. Steinmetz,et al.  High-dimensional geometry of population responses in visual cortex , 2018, Nature.

[11]  Nikil Dutt,et al.  Neural correlates of sparse coding and dimensionality reduction , 2019, PLoS Comput. Biol..

[12]  Zachary P. Schwartz,et al.  Pupil-associated states modulate excitability but not stimulus selectivity in primary auditory cortex , 2019, bioRxiv.

[13]  Xiaolin Hu,et al.  A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex , 2019, PLoS Comput. Biol..

[14]  Stephen V. David,et al.  Spectral tuning of adaptation supports coding of sensory context in auditory cortex , 2019, bioRxiv.

[15]  Guillermo V Carbajal,et al.  The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection , 2018, Trends in hearing.

[16]  Stephen V. David,et al.  Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding , 2017, Hearing Research.

[17]  Stefano Panzeri,et al.  Distinct timescales of population coding across cortex , 2017, Nature.

[18]  Shay Ohayon,et al.  Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology , 2017, Journal of neural engineering.

[19]  C. Li,et al.  Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus , 2017, Nature Communications.

[20]  D. Fitzpatrick,et al.  Opportunities and challenges in modeling human brain disorders in transgenic primates , 2016, Nature Neuroscience.

[21]  Stephen V. David,et al.  The Essential Complexity of Auditory Receptive Fields , 2015, PLoS Comput. Biol..

[22]  Ethan M. Goldberg,et al.  Complementary control of sensory adaptation by two types of cortical interneurons , 2015, eLife.

[23]  A. J. King,et al.  Cortico‐cortical connectivity within ferret auditory cortex , 2015, The Journal of comparative neurology.

[24]  J. Barry Axonal activity in vivo: technical considerations and implications for the exploration of neural circuits in freely moving animals , 2015, Front. Neurosci..

[25]  M. Malmierca,et al.  The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding , 2015, Front. Syst. Neurosci..

[26]  Kenneth D Harris,et al.  Spike sorting for large, dense electrode arrays , 2015, Nature Neuroscience.

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  S. David,et al.  Emergent Selectivity for Task-Relevant Stimuli in Higher-Order Auditory Cortex , 2014, Neuron.

[29]  S. David,et al.  Integration over Multiple Timescales in Primary Auditory Cortex , 2013, The Journal of Neuroscience.

[30]  Neil C. Rabinowitz,et al.  Constructing Noise-Invariant Representations of Sound in the Auditory Pathway , 2013, PLoS biology.

[31]  Michael Wehr,et al.  Parvalbumin-Expressing Inhibitory Interneurons in Auditory Cortex Are Well-Tuned for Frequency , 2013, The Journal of Neuroscience.

[32]  S. A. Shamma,et al.  MANTA—an open-source, high density electrophysiology recording suite for MATLAB , 2013, Front. Neural Circuits.

[33]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[34]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[35]  Jiangang Du,et al.  Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes , 2011, PloS one.

[36]  C. Atencio,et al.  Hierarchical representations in the auditory cortex , 2011, Current Opinion in Neurobiology.

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[38]  A. Zador,et al.  Long-lasting context dependence constrains neural encoding models in rodent auditory cortex. , 2008, Journal of neurophysiology.

[39]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[40]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[41]  I. Nelken,et al.  Functional organization of ferret auditory cortex. , 2005, Cerebral cortex.

[42]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[43]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[44]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[45]  Monty A. Escabí,et al.  Representation of spectrotemporal sound information in the ascending auditory pathway , 2003, Biological Cybernetics.

[46]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[47]  Xiaoqin Wang,et al.  Temporal and rate representations of time-varying signals in the auditory cortex of awake primates , 2001, Nature Neuroscience.

[48]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[49]  S. Shamma,et al.  Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. , 1996, Journal of neurophysiology.

[50]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[51]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[52]  R. Silver Neuronal arithmetic , 2010, Nature Reviews Neuroscience.

[53]  Noam Chomsky,et al.  The Sound Pattern of English , 1968 .

[54]  J. R.,et al.  Quantitative analysis , 1892, Nature.