Bayesian non-parametrics and the probabilistic approach to modelling
暂无分享,去创建一个
[1] Sonia Petrone,et al. Hierarchical reinforced urn processes , 2012 .
[2] Radford M. Neal,et al. Density Modeling and Clustering Using Dirichlet Diffusion Trees , 2003 .
[3] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[4] Phil Blunsom,et al. A Hierarchical Pitman-Yor Process HMM for Unsupervised Part of Speech Induction , 2011, ACL.
[5] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .
[6] T. Ferguson. BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .
[7] Radford M. Neal. Assessing Relevance determination methods using DELVE , 1998 .
[8] David J. C. MacKay,et al. BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .
[9] Nir Friedman,et al. Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks , 2004, Machine Learning.
[10] Tai Sing Lee,et al. The Block Diagonal Infinite Hidden Markov Model , 2009, AISTATS.
[11] David Bruce Wilson,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.
[12] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[13] A. O'Hagan,et al. Bayes–Hermite quadrature , 1991 .
[14] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[15] Eric Saund,et al. Unsupervised Learning of Mixtures of Multiple Causes in Binary Data , 1993, NIPS.
[16] O. Kallenberg. Probabilistic Symmetries and Invariance Principles , 2005 .
[17] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[18] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[19] Thomas L. Griffiths,et al. Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.
[20] Adam Binch,et al. Perception as Bayesian Inference , 2014 .
[21] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[22] M. Glickman,et al. Multivariate Stochastic Volatility via Wishart Processes , 2006 .
[23] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[24] Charles M. Bishop,et al. Variational Message Passing , 2005, J. Mach. Learn. Res..
[25] Zoubin Ghahramani,et al. Modeling Dyadic Data with Binary Latent Factors , 2006, NIPS.
[26] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[27] Zoubin Ghahramani,et al. Infinite Sparse Factor Analysis and Infinite Independent Components Analysis , 2007, ICA.
[28] Emin Orhan. Dirichlet Processes , 2012 .
[29] Michael I. Jordan,et al. An HDP-HMM for systems with state persistence , 2008, ICML '08.
[30] Carl E. Rasmussen,et al. The Infinite Gaussian Mixture Model , 1999, NIPS.
[31] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[32] Michael,et al. On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .
[33] Peter Cheeseman,et al. Bayesian Methods for Adaptive Models , 2011 .
[34] Mark Newman,et al. Networks: An Introduction , 2010 .
[35] Yee Whye Teh,et al. The Infinite Factorial Hidden Markov Model , 2008, NIPS.
[36] Andrew Thomas,et al. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..
[37] Roland Langrock,et al. Nonparametric hidden Markov models , 2013 .
[38] Andrew Gordon Wilson,et al. Generalised Wishart Processes , 2010, UAI.
[39] Alex Bateman,et al. An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.
[40] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[41] Temple F. Smith. Occam's razor , 1980, Nature.
[42] Thomas L. Griffiths,et al. The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..
[43] M. McAleer,et al. Multivariate Stochastic Volatility: A Review , 2006 .
[44] N. Hjort. Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .
[45] Yee Whye Teh,et al. Beam sampling for the infinite hidden Markov model , 2008, ICML '08.
[46] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[47] Joshua B. Tenenbaum,et al. Church: a language for generative models , 2008, UAI.
[48] P. McCullagh,et al. Gibbs fragmentation trees , 2007, 0704.0945.
[49] Carl E. Rasmussen,et al. Bayesian Monte Carlo , 2002, NIPS.
[50] C. J-F,et al. THE COALESCENT , 1980 .
[51] Michael I. Jordan,et al. An internal model for sensorimotor integration. , 1995, Science.
[52] Zoubin Ghahramani,et al. Pitman-Yor Diffusion Trees , 2011, UAI.
[53] Zoubin Ghahramani,et al. Factorial Learning and the EM Algorithm , 1994, NIPS.
[54] Arnold Zellner,et al. [Optimal Information Processing and Bayes's Theorem]: Reply , 1988 .
[55] Thomas P. Minka,et al. Divergence measures and message passing , 2005 .
[56] William D. Penny,et al. Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[57] Elizabeth T. Uldall,et al. [m?m], etc. , 1954 .
[58] Yee Whye Teh,et al. Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.
[59] D. Aldous. Exchangeability and related topics , 1985 .
[60] Ryan P. Adams,et al. Learning the Structure of Deep Sparse Graphical Models , 2009, AISTATS.
[61] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[62] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[63] James O. Berger,et al. Ockham's Razor and Bayesian Analysis , 1992 .
[64] Peter Orbanz,et al. Construction of Nonparametric Bayesian Models from Parametric Bayes Equations , 2009, NIPS.
[65] C. Gouriéroux,et al. The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .
[66] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[67] D. Mackay,et al. Bayesian methods for adaptive models , 1992 .
[68] Oliver Pfaffel. Wishart Processes , 2012, 1201.3256.
[69] Y. Teh,et al. Indian Buffet Processes with Power-law Behavior , 2009, NIPS.
[70] Zoubin Ghahramani,et al. Bayesian Time Series Models: Nonparametric hidden Markov models , 2011 .
[71] J. Tenenbaum,et al. Optimal Predictions in Everyday Cognition , 2006, Psychological science.
[72] Zoubin Ghahramani,et al. Variational Inference for Bayesian Mixtures of Factor Analysers , 1999, NIPS.
[73] Roman Garnett,et al. Bayesian Quadrature for Ratios , 2012, AISTATS.
[74] Klaus Ritter,et al. Bayesian numerical analysis , 2000 .
[75] Zoubin Ghahramani,et al. A note on the evidence and Bayesian Occam's razor , 2005 .
[76] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[77] P Donnelly,et al. Coalescents and genealogical structure under neutrality. , 1995, Annual review of genetics.
[78] Zoubin Ghahramani,et al. Scaling the iHMM: Parallelization versus Hadoop , 2010, 2010 10th IEEE International Conference on Computer and Information Technology.
[79] Yee Whye Teh,et al. Modelling Genetic Variations using Fragmentation-Coagulation Processes , 2011, NIPS.
[80] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[81] Lars Kai Hansen,et al. Infinite multiple membership relational modeling for complex networks , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.
[82] Carl E. Rasmussen,et al. Factorial Hidden Markov Models , 1997 .
[83] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[84] Zoubin Ghahramani,et al. An Infinite Latent Attribute Model for Network Data , 2012, ICML.
[85] A. Zellner. Optimal Information Processing and Bayes's Theorem , 1988 .
[86] Geoffrey E. Hinton,et al. Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.
[87] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[88] S. Gupta,et al. Statistical decision theory and related topics IV , 1988 .
[89] S H Chung,et al. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.