Efficient line and patch feature characterization and management for real-time camera tracking

One of the key problems of augmented reality is the tracking of the camera position and viewing direction in real-time. Current vision-based systems mostly rely on the detection and tracking of fiducial markers. Some markerless approaches exist, which are based on 3D line models or calibrated reference images. These methods require a high manual preprocessing work step, which is not applicable for the efficient development and design of industrial AR applications. The problem of the preprocessing overload is addressed by the development of vision-based tracking algorithms, which require a minimal workload of the preparation of reference data. A novel method for the automatic view-dependent generation of line models in real-time is presented. The tracking system only needs a polygonal model of a reference object, which is often available from the industrial construction process. Analysis-by-synthesis techniques are used with the support of graphics hardware to create a connection between virtual model and real model. Point-based methods which rely on optical flow-based template tracking are developed for the camera pose estimation in partially known scenarios. With the support of robust reconstruction algorithms a real-time tracking system for augmented reality applications is developed, which is able to run with only very limited previous knowledge about the scene. The robustness and real-time capability is improved with a statistical approach for a feature management system which is based on machine learning techniques.

[1]  Dieter Schmalstieg,et al.  Artoolkitplus for pose tracking on mobile devices , 2007 .

[2]  Horst Bischof,et al.  Fast Approximated SIFT , 2006, ACCV.

[3]  Ross Bencina,et al.  The Design and Evolution of Fiducials for the reacTIVision System , 2005 .

[4]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[5]  David W. Murray,et al.  Full-3D Edge Tracking with a Particle Filter , 2006, BMVC.

[6]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[7]  Ronald Azuma,et al.  A Survey of Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[8]  Thomas B. Schön,et al.  Robust real-time tracking by fusing measurements from inertial and vision sensors , 2007, Journal of Real-Time Image Processing.

[9]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[10]  J. P. Mellor,et al.  Enhanced Reality Visualization in a Surgical Environment , 1995 .

[11]  Greg Welch,et al.  The HiBall Tracker: high-performance wide-area tracking for virtual and augmented environments , 1999, VRST '99.

[12]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[13]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[14]  HebertMartial,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999 .

[15]  Marion Langer,et al.  Automatic contour model creation out of polygonal CAD models for markerless Augmented Reality , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[16]  Vincent Lepetit,et al.  Stable real-time 3D tracking using online and offline information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Tom Drummond,et al.  Rapid rendering of apparent contours of implicit surfaces for real-time tracking , 2003, BMVC.

[18]  Larry S. Davis,et al.  Iterative Pose Estimation Using Coplanar Feature Points , 1996, Comput. Vis. Image Underst..

[19]  Roberto Cipolla,et al.  Real-time tracking of complex structures with on-line camera calibration , 2002, Image Vis. Comput..

[20]  Hirokazu Kato,et al.  Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[21]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[22]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[23]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Nassir Navab,et al.  Fusion of 3D and Appearance Models for Fast Object Detection and Pose Estimation , 2006, ACCV.

[25]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[26]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Éric Marchand,et al.  A real-time tracker for markerless augmented reality , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[29]  Mark Fiala,et al.  ARTag, a fiducial marker system using digital techniques , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Didier Stricker,et al.  Feature Management for Efficient Camera Tracking , 2007, ACCV.

[31]  Dirk Schulz,et al.  Bayesian Filters for Location Estimation , 2003 .

[32]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[33]  T. Drummond,et al.  Going out : Robust Tracking for Outdoor Augmented Reality , 2006 .

[34]  Philip David,et al.  Simultaneous pose and correspondence determination using line features , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[35]  Akio Kosaka,et al.  Vision-based motion tracking of frigid objects using prediction of uncertainties , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[36]  Tim Hauke Heibel,et al.  A mobile markerless AR system for maintenance and repair , 2006, 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality.

[37]  Takeo Kanade,et al.  A tracker for broken and closely spaced lines , 1999, Systems and Computers in Japan.

[38]  Reinhard Koch,et al.  Architecture and Tracking Algorithms for a Distributed Mobile Industrial AR System , 2007 .

[39]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[40]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[41]  Didier Stricker,et al.  Fast and Stable Tracking for AR fusing Video and Inertial Sensor Data , 2006 .

[42]  Heinrich Niemann,et al.  Efficient Feature Tracking for Long Video Sequences , 2004, DAGM-Symposium.

[43]  Andrew Zisserman,et al.  Robust Object Tracking , 2001 .

[44]  Michael Gervautz,et al.  CCD‐Camera Based Optical Beacon Tracking for Virtual and Augmented Reality , 1996, Comput. Graph. Forum.

[45]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[46]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Axel Pinz,et al.  A new optical tracking system for virtual and augmented reality applications , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[48]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[50]  Eric Foxlin,et al.  Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[51]  Didier Stricker,et al.  Tracking with reference images: a real-time and markerless tracking solution for out-door augmented reality applications , 2001, VAST '01.

[52]  Simon Baker,et al.  Equivalence and efficiency of image alignment algorithms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[53]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Yakup Genc,et al.  Learn to Track Edges , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[55]  Chris Harris,et al.  RAPID - a video rate object tracker , 1990, BMVC.

[56]  Jun S. Liu,et al.  Mixture Kalman ®lters , 2000 .

[57]  Tom Drummond,et al.  Initialisation for Visual Tracking in Urban Environments , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[58]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[59]  H. M. Karara,et al.  Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry , 2015 .

[60]  Didier Stricker,et al.  Adaptive line tracking with multiple hypotheses for augmented reality , 2005, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05).

[61]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[62]  Lee Markosian,et al.  Artistic silhouettes: a hybrid approach , 2000, NPAR '00.

[63]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[64]  Marie-Odile Berger,et al.  A two-stage robust statistical method for temporal registration from features of various type , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[65]  Pascal Fua,et al.  Texture Boundary Detection for Real-Time Tracking , 2004, ECCV.

[66]  Sinisa Segvic,et al.  Enhancing the Point Feature Tracker by Adaptive Modelling of the Feature Support , 2006, ECCV.

[67]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[68]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.

[69]  Ian D. Reid,et al.  Locally Planar Patch Features for Real-Time Structure from Motion , 2004, BMVC.

[70]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[71]  P. Fua,et al.  Towards Recognizing Feature Points using Classification Trees , 2004 .

[72]  Philip David,et al.  SoftPOSIT: Simultaneous Pose and Correspondence Determination , 2002, International Journal of Computer Vision.

[73]  Stefano Soatto,et al.  Real-Time Feature Tracking and Outlier Rejection with Changes in Illumination , 2001, ICCV.

[74]  David W. Scott,et al.  From Kernels to Mixtures , 2001, Technometrics.

[75]  Didier Stricker,et al.  Adaptable Model-Based Tracking Using Analysis-by-Synthesis Techniques , 2007, CAIP.

[76]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[77]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[78]  Stefano Soatto,et al.  A semi-direct approach to structure from motion , 2003, The Visual Computer.

[79]  T. Pintaric,et al.  An adaptive thresholding algorithm for the augmented reality toolkit , 2003, 2003 IEEE International Augmented Reality Toolkit Workshop.

[80]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[82]  Didier Stricker,et al.  Online camera pose estimation in partially known and dynamic scenes , 2006, 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality.

[83]  Patrick Bouthemy,et al.  A 2D-3D model-based approach to real-time visual tracking , 2001, Image Vis. Comput..

[84]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[86]  Richard Szeliski,et al.  Systems and Experiment Paper: Construction of Panoramic Image Mosaics with Global and Local Alignment , 2000, International Journal of Computer Vision.

[87]  Vincent Lepetit,et al.  Point matching as a classification problem for fast and robust object pose estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[88]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[89]  Radu Horaud,et al.  Visual tracking of an end-effector by adaptive kinematic prediction , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[90]  Ian D. Reid,et al.  Real-Time SLAM Relocalisation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[91]  Andrew W. Fitzgibbon,et al.  VHS to VRML: 3D graphical models from video sequences , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[92]  Tom Drummond,et al.  Multi-Modal Tracking using Texture Changes , 2004, BMVC.

[93]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[94]  Vincent Lepetit,et al.  Combining edge and texture information for real-time accurate 3D camera tracking , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[95]  Vincent Lepetit,et al.  Accurate Non-Iterative O(n) Solution to the PnP Problem , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[96]  D HagerGregory,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998 .

[97]  Guopu Zhu,et al.  Efficient Illumination Insensitive Object Tracking by Normalized Gradient Matching , 2007, IEEE Signal Processing Letters.

[98]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[99]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[100]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[101]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[102]  Ferdinand van der Heijden,et al.  Recursive unsupervised learning of finite mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  Aaron Hertzmann,et al.  Introduction to 3D Non-Photorealistic Rendering: Silhouettes and Outlines , 1999 .

[104]  Dean Brown,et al.  Decentering distortion of lenses , 1966 .

[105]  Eric Foxlin,et al.  Encoded LED system for optical trackers , 2005, Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR'05).

[106]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[107]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[108]  Iain Matthews,et al.  Efficient Image Alignment with Outlier Rejection , 2002 .

[109]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  Barry-John Theobald,et al.  Evaluating error functions for robust active appearance models , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[111]  Tobias Isenberg,et al.  A Developer's Guide to Silhouette Algorithms for Polygonal Models , 2003, IEEE Computer Graphics and Applications.

[112]  Y. Bar-Shalom Tracking and data association , 1988 .

[113]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[114]  Ulrich Neumann,et al.  Multiring Fiducial Systems for Scalable Fiducial-Tracking Augmented Reality , 2001, Presence: Teleoperators & Virtual Environments.

[115]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[116]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[117]  Donald B. Gennery,et al.  Visual tracking of known three-dimensional objects , 1992, International Journal of Computer Vision.

[118]  Jürgen Döllner,et al.  Edge-Enhancement - An Algorithm for Real-Time Non-Photorealistic Rendering , 2003, WSCG.

[119]  Jefferson Y. Han Low-cost multi-touch sensing through frustrated total internal reflection , 2005, UIST.

[120]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[121]  James T. Kwok,et al.  Simplifying Mixture Models Through Function Approximation , 2006, IEEE Transactions on Neural Networks.

[122]  Emanuele Trucco,et al.  Making good features track better , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[123]  Andrew Calway,et al.  Real-Time Camera Tracking Using a Particle Filter , 2005, BMVC.