The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool
暂无分享,去创建一个
[1] A. Frieze,et al. Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .
[2] M. Guignard,et al. Lagrangean decomposition for integer programming: theory and applications , 1987 .
[3] Arnaud Fréville,et al. An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..
[4] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[5] Fred Glover,et al. Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .
[6] H. Martin Weingartner,et al. Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.
[7] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[8] Harvey J. Greenberg,et al. Surrogate Mathematical Programming , 1970, Oper. Res..
[9] Clifford C. Petersen,et al. Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .
[10] L. J. Savage,et al. Three Problems in Rationing Capital , 1955 .
[11] Monique Guignard-Spielberg,et al. Logical Reduction Methods in Zero-One Programming - Minimal Preferred Variables , 1981, Oper. Res..
[12] Sartaj Sahni,et al. Approximate Algorithms for the 0/1 Knapsack Problem , 1975, JACM.
[13] R. Rardin,et al. Surrogate duality in a branch‐and‐bound procedure , 1981 .
[14] S. Voß,et al. Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .
[15] Oscar H. Ibarra,et al. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.
[16] Fred Glover,et al. Surrogate Constraint Duality in Mathematical Programming , 1975, Oper. Res..
[17] Monique Guignard-Spielberg,et al. Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..
[18] Saïd Hanafi,et al. Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .
[19] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[20] A. Fréville,et al. An exact search for the solution of the surrogate dual of the 0–1 bidimensional knapsack problem , 1993 .
[21] F. Glover. HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .
[22] Arnaud Fréville,et al. Sac à dos multidimensionnel en variables 0-1 : encadrement de la somme des variables à l'optimum , 1993 .
[23] Manfred W. Padberg. (1,k)-configurations and facets for packing problems , 1980, Math. Program..
[24] Laureano F. Escudero,et al. On tightening cover induced inequalities , 1992 .
[25] Saïd Hanafi,et al. An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..
[26] Ferydoon Kianfar. Stronger Inequalities for 0, 1 Integer Programming Using Knapsack Functions , 1971, Oper. Res..
[27] F. Glover. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .
[28] Robert M. Nauss,et al. An Efficient Algorithm for the 0-1 Knapsack Problem , 1976 .
[29] Stefan Voß,et al. Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..
[30] Egon Balas,et al. An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..
[31] Hasan Pirkul,et al. Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..
[32] M. Fisher,et al. Constructive Duality in Integer Programming , 1974 .
[33] A. S. Manne,et al. On the Solution of Discrete Programming Problems , 1956 .
[34] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[35] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[36] A. Fréville,et al. Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .
[37] Gang Yu,et al. Algorithms for optimizing piecewise linear functions and for degree-constrained minimum spanning tree problems , 1990 .
[38] Gérard Plateau,et al. An Exact Algorithm for the 0- 1 Collapsing Knapsack Problem , 1994, Discret. Appl. Math..
[39] Martin W. P. Savelsbergh,et al. Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..
[40] Laureano F. Escudero,et al. Efficient Reformulation for 0-1 Programs - Methods and Computational Results , 1993, Discret. Appl. Math..
[41] Ronald L. Rardin,et al. Surrogate duality in a branch-and-bound procedure for integer programming , 1988 .
[42] Martin W. P. Savelsbergh,et al. MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..
[43] David S. Johnson,et al. `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.
[44] A. L. Soyster,et al. Zero-one programming with many variables and few constraints , 1978 .
[45] S. Martello,et al. A New Algorithm for the 0-1 Knapsack Problem , 1988 .
[46] Ellis L. Johnson,et al. Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..
[47] Laureano F. Escudero,et al. Coefficient reduction for knapsack-like constraints in 0-1 programs with variable upper bounds , 1990 .