The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool

Efficient codes exist for exactly solving the 0-1 knapsack problem, which is a common primitive structure in relaxation and decomposition techniques for the solution of general models. We suggest moving to a higher primitive level by using the bidimensional knapsack, which can be used to enhance linear programming or Lagrangean type classical relaxations.With the ultimate aim of providing an exact and efficient solution to the bidimensional knapsack problem, we describe here a heuristic approach based on surrogate duality. In particular, we consider the usefulness of a specific preprocessing phase before a possible enumerative phase.Extensive numerical experiments, based on test problems from the literature as well as randomly generated instances, show that our code compares favorably with the GP procedure developed by Gavish and Pirkul for the multidimensional case.

[1]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[2]  M. Guignard,et al.  Lagrangean decomposition for integer programming: theory and applications , 1987 .

[3]  Arnaud Fréville,et al.  An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..

[4]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[5]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[6]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.

[7]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[8]  Harvey J. Greenberg,et al.  Surrogate Mathematical Programming , 1970, Oper. Res..

[9]  Clifford C. Petersen,et al.  Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .

[10]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[11]  Monique Guignard-Spielberg,et al.  Logical Reduction Methods in Zero-One Programming - Minimal Preferred Variables , 1981, Oper. Res..

[12]  Sartaj Sahni,et al.  Approximate Algorithms for the 0/1 Knapsack Problem , 1975, JACM.

[13]  R. Rardin,et al.  Surrogate duality in a branch‐and‐bound procedure , 1981 .

[14]  S. Voß,et al.  Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .

[15]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[16]  Fred Glover,et al.  Surrogate Constraint Duality in Mathematical Programming , 1975, Oper. Res..

[17]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[18]  Saïd Hanafi,et al.  Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .

[19]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[20]  A. Fréville,et al.  An exact search for the solution of the surrogate dual of the 0–1 bidimensional knapsack problem , 1993 .

[21]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[22]  Arnaud Fréville,et al.  Sac à dos multidimensionnel en variables 0-1 : encadrement de la somme des variables à l'optimum , 1993 .

[23]  Manfred W. Padberg (1,k)-configurations and facets for packing problems , 1980, Math. Program..

[24]  Laureano F. Escudero,et al.  On tightening cover induced inequalities , 1992 .

[25]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[26]  Ferydoon Kianfar Stronger Inequalities for 0, 1 Integer Programming Using Knapsack Functions , 1971, Oper. Res..

[27]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[28]  Robert M. Nauss,et al.  An Efficient Algorithm for the 0-1 Knapsack Problem , 1976 .

[29]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[30]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[31]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[32]  M. Fisher,et al.  Constructive Duality in Integer Programming , 1974 .

[33]  A. S. Manne,et al.  On the Solution of Discrete Programming Problems , 1956 .

[34]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[37]  Gang Yu,et al.  Algorithms for optimizing piecewise linear functions and for degree-constrained minimum spanning tree problems , 1990 .

[38]  Gérard Plateau,et al.  An Exact Algorithm for the 0- 1 Collapsing Knapsack Problem , 1994, Discret. Appl. Math..

[39]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[40]  Laureano F. Escudero,et al.  Efficient Reformulation for 0-1 Programs - Methods and Computational Results , 1993, Discret. Appl. Math..

[41]  Ronald L. Rardin,et al.  Surrogate duality in a branch-and-bound procedure for integer programming , 1988 .

[42]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[43]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[44]  A. L. Soyster,et al.  Zero-one programming with many variables and few constraints , 1978 .

[45]  S. Martello,et al.  A New Algorithm for the 0-1 Knapsack Problem , 1988 .

[46]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[47]  Laureano F. Escudero,et al.  Coefficient reduction for knapsack-like constraints in 0-1 programs with variable upper bounds , 1990 .