Nonlinear information processing in a model sensory system.

Understanding the mechanisms by which sensory neurons encode and decode information remains an important goal in neuroscience. We quantified the performance of optimal linear and nonlinear encoding models in a well-characterized sensory system: the electric sense of weakly electric fish. We show that linear encoding models generally perform better under spatially localized stimulation than under spatially diffuse stimulation. Through pharmacological blockade of feedback input and spatial saturation of the receptive field center, we show that there is significantly less synaptic noise under spatially diffuse stimuli as compared with spatially localized stimuli. Modeling results suggest that pyramidal cells nonlinearly encode sensory information through shunting in their dendrites and clarify the influence of synaptic noise on the performance of linear encoding models. Finally, we used information theory to quantify the performance of linear decoders. While the optimal linear decoder for spatially localized stimuli could capture 60% of the information in pyramidal cell spike trains, the optimal linear decoder for spatially diffuse stimuli could only capture 40% of the information. These results show that nonlinear decoders are necessary to fully access information in pyramidal cell spike trains, and we discuss potential mechanisms by which higher-order neurons could decode this information.

[1]  Alexander Borst,et al.  Dendritic integration of motion information in visual interneurons of the blowfly , 1992, Neuroscience Letters.

[2]  Naoki Kogo,et al.  Shunting inhibition in accessory optic system neurons. , 2005, Journal of neurophysiology.

[3]  J Bastian,et al.  Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. , 1996, Journal of neurophysiology.

[4]  Matthias H Hennig,et al.  The Influence of Different Retinal Subcircuits on the Nonlinearity of Ganglion Cell Behavior , 2002, The Journal of Neuroscience.

[5]  Brent Doiron,et al.  Non-classical receptive field mediates switch in a sensory neuron's frequency tuning , 2003, Nature.

[6]  J. Lambert,et al.  Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones , 1999, The Journal of physiology.

[7]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[8]  Partha P. Mitra,et al.  Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials , 2000, Neural Computation.

[9]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[10]  Leonard Maler,et al.  Evoked chirping in the weakly electric fish Apteronotus leptorhynchus: a quantitative biophysical analysis , 1993 .

[11]  M. E. Nelson,et al.  Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish , 1997, Journal of Comparative Physiology A.

[12]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[13]  Joseph Bastian,et al.  The physiology and morphology of two types of electrosensory neurons in the weakly electric fishApteronotus leptorhynchus , 1984, Journal of Comparative Physiology A.

[14]  J. Martiel,et al.  Modeling the integrative properties of dendrites: Application to the striatal spiny neuron , 1994, Synapse.

[15]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[16]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[17]  M. A. MacIver,et al.  Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. , 1999, The Journal of experimental biology.

[18]  D. Zhang,et al.  Anatomical characterization of retinal ganglion cells that project to the nucleus of the basal optic root in the turtle (Pseudemys scripta elegans) , 1994, Neuroscience.

[19]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[20]  P Andersen,et al.  Summation of excitatory postsynaptic potentials in hippocampal pyramidal cells. , 1983, Journal of neurophysiology.

[21]  Christof Koch,et al.  Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources , 1999, Neural Computation.

[22]  André Longtin,et al.  Noise shaping by interval correlations increases information transfer. , 2004, Physical review letters.

[23]  Tomás Gedeon,et al.  Dejittered Spike-Conditioned Stimulus Waveforms Yield Improved Estimates of Neuronal Feature Selectivity and Spike-Timing Precision of Sensory Interneurons , 2005, The Journal of Neuroscience.

[24]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[25]  K. Frank,et al.  CHAPTER 2 – MICROELECTRODES FOR RECORDING AND STIMULATION , 1964 .

[26]  J O Hollinger,et al.  Quantitative light microscopy. A powerful tool to assess bone. , 1994, Clinics in plastic surgery.

[27]  J. Bastian Electrolocation: I. How the electroreceptors ofApteronotus albifrons code for moving objects and other electrical stimuli , 1981 .

[28]  J. Hounsgaard,et al.  Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro. , 1994, The Journal of physiology.

[29]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[30]  John P. Miller,et al.  Assessing the Performance of Neural Encoding Models in the Presence of Noise , 2000, Journal of Computational Neuroscience.

[31]  D. Contreras,et al.  Nonlinear Integration of Sensory Responses in the Rat Barrel Cortex: An Intracellular Study In Vivo , 2003, The Journal of Neuroscience.

[32]  Gary J Rose,et al.  Voltage-gated Na+ channels enhance the temporal filtering properties of electrosensory neurons in the torus. , 2003, Journal of neurophysiology.

[33]  M H Ellisman,et al.  TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[35]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[36]  H. Lohmann,et al.  Spatio-temporal summation of synaptic activity in visual cortical pyramidal cells in vitro , 1995, Brain Research.

[37]  R Krahe,et al.  Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia. , 2000, Journal of neurophysiology.

[38]  J. Bastian,et al.  Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs. , 1998, Journal of neurophysiology.

[39]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[40]  B. Walmsley,et al.  The time course of synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. , 1983, The Journal of physiology.

[41]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[42]  J. Miller,et al.  Synaptic amplification by active membrane in dendritic spines , 1985, Brain Research.

[43]  J Bastian Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter. , 1996, Journal of neurophysiology.

[44]  T. Poggio,et al.  A New Approach to Synaptic Interactions , 1978 .

[45]  M. Ariel,et al.  Response attenuation during coincident afferent excitatory inputs. , 1999, Journal of neurophysiology.

[46]  L. Maler,et al.  Plastic and Nonplastic Pyramidal Cells Perform Unique Roles in a Network Capable of Adaptive Redundancy Reduction , 2004, Neuron.

[47]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[48]  R. Lipowsky,et al.  Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. , 1996, Journal of neurophysiology.

[49]  W Rall,et al.  Computational study of an excitable dendritic spine. , 1988, Journal of neurophysiology.

[50]  Maurice J Chacron,et al.  Electroreceptor neuron dynamics shape information transmission , 2005, Nature Neuroscience.

[51]  M. Ariel,et al.  Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. , 1997, Journal of neurophysiology.

[52]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[53]  C. Koch,et al.  From stimulus encoding to feature extraction in weakly electric fish , 1996, Nature.

[54]  J. Miller,et al.  Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. , 1996, Journal of neurophysiology.

[55]  M. Ariel,et al.  Direction Tuning of Individual Retinal Inputs to the Turtle Accessory Optic System , 1998, The Journal of Neuroscience.

[56]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[57]  J. Bastian Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Idan Segev,et al.  Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Lytton,et al.  Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex. , 1997, Journal of neurophysiology.

[60]  Joseph Bastian,et al.  Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish , 1991, Journal of Comparative Physiology A.

[61]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[62]  A. Reiner,et al.  A projection of displaced ganglion cells and giant ganglion cells to the accessory optic nuclei in turtle , 1981, Brain Research.

[63]  Maurice J Chacron,et al.  Receptive Field Organization Determines Pyramidal Cell Stimulus-Encoding Capability and Spatial Stimulus Selectivity , 2002, The Journal of Neuroscience.

[64]  J. Alves-Gomes,et al.  Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes , 1999, The Journal of experimental biology.

[65]  Brent Doiron,et al.  Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli , 2003, Nature.

[66]  L. Maler,et al.  The posterior lateral line lobe of certain gymnotoid fish: Quantitative light microscopy , 1979, The Journal of comparative neurology.

[67]  G. Barrionuevo,et al.  Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Chacron,et al.  Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  M. Stemmler A single spike suffices: the simplest form of stochastic resonance in model neurons , 1996 .

[70]  R E Burke,et al.  Composite nature of the monosynaptic excitatory postsynaptic potential. , 1967, Journal of neurophysiology.

[71]  E. Fortune,et al.  Passive and Active Membrane Properties Contribute to the Temporal Filtering Properties of Midbrain Neurons In Vivo , 1997, The Journal of Neuroscience.

[72]  Bb Lee,et al.  Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[74]  L. Maler,et al.  The cytology of the posterior lateral line lobe of high‐frequency weakly electric fish (gymnotidae): Dendritic differentiation and synaptic specificity in a simple cortex , 1981, The Journal of comparative neurology.

[75]  L. Maler,et al.  Excitatory amino acid receptors at a feedback pathway in the electrosensory system: implications for the searchlight hypothesis. , 1997, Journal of neurophysiology.

[76]  Morten Raastad,et al.  Extracellular Activation of Unitary Excitatory Synapses Between Hippocampal CA3 and CA1 Pyramidal Cells , 1995, The European journal of neuroscience.

[77]  Brent Doiron,et al.  Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. , 2004, Physical review letters.

[78]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[79]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[80]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[81]  André Longtin,et al.  Delayed excitatory and inhibitory feedback shape neural information transmission. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  W. Crill,et al.  Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones , 1974, The Journal of physiology.

[83]  R. Yuste,et al.  Input Summation by Cultured Pyramidal Neurons Is Linear and Position-Independent , 1998, The Journal of Neuroscience.

[84]  L. Maler,et al.  Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli , 2001, The Journal of Neuroscience.

[85]  Fabrizio Gabbiani,et al.  Burst firing in sensory systems , 2004, Nature Reviews Neuroscience.

[86]  L. Maler,et al.  Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. , 2000, Physical review letters.

[87]  J. Bastian,et al.  The role of amino acid neurotransmitters in the descending control of electroreception , 1993, Journal of Comparative Physiology A.

[88]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[89]  R J Dunn,et al.  Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system. , 2001, Journal of neurophysiology.

[90]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  F Gabbiani,et al.  Feature Extraction by Burst-Like Spike Patterns in Multiple Sensory Maps , 1998, The Journal of Neuroscience.

[92]  Christof Koch,et al.  Stimulus Encoding and Feature Extraction by Multiple Sensory Neurons , 2002, The Journal of Neuroscience.

[93]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[94]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[95]  G. Pollack,et al.  Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. , 2004, Journal of neurophysiology.

[96]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[97]  A Treves,et al.  On the perceptual structure of face space. , 1997, Bio Systems.

[98]  Fabrizio Gabbiani,et al.  Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. , 1996, Network.

[99]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[100]  L. Maler,et al.  Spike-Frequency Adaptation Separates Transient Communication Signals from Background Oscillations , 2005, The Journal of Neuroscience.

[101]  B. McNaughton,et al.  Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro. , 1981, Journal of neurophysiology.

[102]  W Rall,et al.  Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. , 1967, Journal of neurophysiology.

[103]  C. Koch,et al.  Coding of time-varying electric field amplitude modulations in a wave-type electric fish. , 1996, Journal of neurophysiology.

[104]  W. N. Ross,et al.  IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  T J Sejnowski,et al.  When is an inhibitory synapse effective? , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[106]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[107]  G. Pollack,et al.  Effect of the Temporal Pattern of Contralateral Inhibition on Sound Localization Cues , 2005, The Journal of Neuroscience.

[108]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[109]  J. Bastian,et al.  Dendritic modulation of burst-like firing in sensory neurons. , 2001, Journal of neurophysiology.

[110]  M. Kuno,et al.  Non‐linear summation of unit synaptic potentials in spinal motoneurones of the cat , 1969, The Journal of physiology.

[111]  Maurice J Chacron,et al.  Feedback and Feedforward Control of Frequency Tuning to Naturalistic Stimuli , 2005, The Journal of Neuroscience.

[112]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[113]  Christopher L Passaglia,et al.  Information transmission rates of cat retinal ganglion cells. , 2004, Journal of neurophysiology.

[114]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[115]  N. Lemon,et al.  Conditional spike backpropagation generates burst discharge in a sensory neuron. , 2000, Journal of neurophysiology.

[116]  Joseph G. Hoffman,et al.  Physical Techniques in Biological Research , 1963 .

[117]  R K Wong,et al.  Intracellular QX-314 blocks the hyperpolarization-activated inward current Iq in hippocampal CA1 pyramidal cells. , 1995, Journal of neurophysiology.

[118]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.