High-gain observer based decentralised output feedback control for interconnected nonlinear systems with unknown hysteresis input

In this paper, an adaptive dynamic surface control is proposed for a class of interconnected nonlinear systems with inputs preceded by unknown saturated PI hysteresis. By using the proposed dynamic surface control scheme, the explosion of complexity problem when the hysteresis is fused with backstepping design can be eliminated which, together with the estimation of vector norm of the unknown parameters, greatly simplifies the control law and reduces the computational burden. Moreover, by introducing an initialisation technique, the tracking performance of each subsystem can be guaranteed, which, for the first time, establishes the relationship between tracking performance and design parameters in the interconnected system.

[1]  M. E. Semenov,et al.  THE NEW RESULTS IN THE THEORY OF PERIODIC OSCILLATION IN NONLINEAR CONTROL SYSTEMS , 1991 .

[2]  A. N. Atassi,et al.  Separation results for the stabilization of nonlinear systems using different high-gain observer designs ☆ , 2000 .

[3]  J. Hedrick,et al.  Multiple-surface sliding control of a class of uncertain nonlinear systemsm , 1996 .

[4]  Ying Zhang,et al.  Robust decentralized adaptive stabilization of interconnected systems with guaranteed transient performance , 2000, Autom..

[5]  Y. Stepanenko,et al.  Intelligent control of piezoelectric actuators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  D. D. Siljak,et al.  Decentralized Adaptive Control: Structural Conditions for Stability , 1988, 1988 American Control Conference.

[7]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[8]  Chia-Hsiang Menq,et al.  Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .

[9]  Zhong-Ping Jiang,et al.  Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback , 2000, IEEE Trans. Autom. Control..

[10]  Graham C. Goodwin,et al.  Stability analysis of decentralised robust adaptive control , 1988 .

[11]  Chun-Yi Su,et al.  Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations , 2006, Autom..

[12]  Keith W. Hipel,et al.  Using a Benchmark in Case-Based Multiple-Criteria Ranking , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[13]  R. Ortega,et al.  A solution to the decentralized adaptive stabilization problem , 1993 .

[14]  Jing Zhou,et al.  Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis , 2007, Autom..

[15]  Romeo Ortega An energy amplification condition for decentralized adaptive stabilization , 1996, IEEE Trans. Autom. Control..

[16]  C. Wen,et al.  Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis , 2004, IEEE Transactions on Automatic Control.

[17]  Changyun Wen Indirect robust totally decentralized adaptive control of continuous-time interconnected systems , 1995 .

[18]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[19]  C. Wen Decentralized adaptive regulation , 1994, IEEE Trans. Autom. Control..

[20]  Yan Lin,et al.  An adaptive output feedback dynamic surface control for a class of nonlinear systems with unknown backlash‐like hysteresis , 2013 .

[21]  Chun-Yi Su,et al.  Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis , 2000, IEEE Trans. Autom. Control..

[22]  Yan Lin,et al.  A robust adaptive dynamic surface control for a class of nonlinear systems with unknown Prandtl–Ishilinskii hysteresis , 2011 .

[23]  Changyun Wen,et al.  Decentralized adaptive control using integrator backstepping , 1997, Autom..

[24]  Jing Zhou,et al.  Decentralized Backstepping Adaptive Output Tracking of Interconnected Nonlinear Systems , 2008, IEEE Transactions on Automatic Control.

[25]  Shuzhi Sam Ge,et al.  Adaptive Neural Control for a Class of Uncertain Nonlinear Systems in Pure-Feedback Form With Hysteresis Input , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Petros A. Ioannou Decentralized adaptive control of interconnected systems , 1986 .

[27]  Subhash Rakheja,et al.  Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.

[28]  David J. Hill,et al.  Global boundedness of discrete-time adaptive control just using estimator projection , 1992, Autom..

[29]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[30]  Xudong Ye,et al.  A flat-zone modification for robust adaptive control of nonlinear output feedback systems with unknown high-frequency gains , 2002, IEEE Trans. Autom. Control..

[31]  Graham C. Goodwin,et al.  Stability analysis of decentralized robust adaptive control , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[32]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .