Construction et évaluation d'un corpus pour la recherche d'instances d'images muséales

This paper presents two datasets of annotated photos and videos from two museums. The data comes from two different museums : the Musée de Grenoble, with mainly paintings, and the Lyon-Fourvière museum, with Celtic and pre-Roman objects. In total, they contain 4674 annotated images, corresponding to 784 different artworks, and 3h07 of museum visit firstperson videos shot by 5 persons. This dataset can be used as a challenge for image retrieval and video segmentation and annotation tasks. They are freely available to the research community. The images of these collections contain 361 queries on a corpus of 4313 documents. Moreover, 2132 additional images are extracted from the visit videos, allowing to test images from other sources. Three state of the art approaches are processed and tested on these collections. MOTS-CLÉS : Recherche d’instances images, corpus.

[1]  Martha Larson,et al.  Pairwise geometric matching for large-scale object retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Koen E. A. van de Sande,et al.  Empowering Visual Categorization With the GPU , 2011, IEEE Transactions on Multimedia.

[6]  Thomas Mensink,et al.  The Rijksmuseum Challenge: Museum-Centered Visual Recognition , 2014, ICMR.

[7]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[8]  Philippe Mulhem,et al.  Étude préliminaire à la recherche de photographies muséales en mobilité , 2016, CORIA-CIFED.

[9]  Georges Quénot,et al.  The CAMOMILE Collaborative Annotation Platform for Multi-modal, Multi-lingual and Multi-media Documents , 2016, LREC.

[10]  Andrew Zisserman,et al.  On-the-fly learning for visual search of large-scale image and video datasets , 2015, International Journal of Multimedia Information Retrieval.

[11]  Yannis Avrithis,et al.  Image Search with Selective Match Kernels: Aggregation Across Single and Multiple Images , 2016, International Journal of Computer Vision.

[12]  David Picard,et al.  Challenges in Content-Based Image Indexing of Cultural Heritage Collections , 2015, IEEE Signal Processing Magazine.

[13]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[15]  O. Chum,et al.  ENHANCING RANSAC BY GENERALIZED MODEL OPTIMIZATION Onďrej Chum, Jǐ , 2003 .

[16]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[18]  Albert Gordo,et al.  Deep Image Retrieval: Learning Global Representations for Image Search , 2016, ECCV.

[19]  Jia Deng,et al.  A large-scale hierarchical image database , 2009, CVPR 2009.

[20]  Silvio Savarese,et al.  Deep Learning for Single-View Instance Recognition , 2015, ArXiv.

[21]  Florence Andreacola,et al.  Musée et numérique, enjeux et mutations , 2014 .

[22]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[23]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[24]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[25]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[26]  C. J. van Rijsbergen,et al.  Report on the need for and provision of an 'ideal' information retrieval test collection , 1975 .