Active force control for robotic micro-assembly: Application to guiding tasks

This paper presents an analytical model and experimental results from a study of guiding tasks in micro-assembly. This work is focused on the use of two fingers for gripping microparts. The stability of the grasp when the contact appears is investigated and strategies during the guiding task are discussed. The contact side detection and the contact force estimation are studied. The incremental control in static mode is then investigated for controlling the guiding task. Experimental setups are proposed and some experimental results are presented.

[1]  S.K. Tso,et al.  Experimental study of contact transition control incorporating joint acceleration feedback , 2000 .

[2]  Philippe Lutz,et al.  Measurement setup of pull-off force for planar contact at the microscale * , 2009 .

[3]  Imad H. Elhajj,et al.  A 2-D PVDF force sensing system for micro-manipulation and micro-assembly , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Peter C. Y. Chen,et al.  A force-feedback control system for micro-assembly , 2006 .

[5]  Philippe Lutz,et al.  Measurement of pull-off force for planar contact at the microscale , 2009 .

[6]  Yantao Shen,et al.  Contact and force control in microassembly , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[7]  Stephane Regnier,et al.  Analysis of forces for micromanipulations in dry and liquid media , 2006 .

[8]  Bradley J. Nelson,et al.  A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Yu Zhou,et al.  Fusing force and vision feedback for micromanipulation , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Erdogan Madenci,et al.  Toward the development of miniaturized imaging systems for detection of pre-cancer , 2002 .

[11]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[12]  Nicholas G. Dagalakis,et al.  Multi-Probe Micro-Assembly , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[13]  Sergej Fatikow,et al.  Micro-force sensing in a micro-robotic system , 2001 .

[14]  W. Cleghorn,et al.  Microassembly of 3-D microstructures using a compliant, passive microgripper , 2004, Journal of Microelectromechanical Systems.

[15]  C. Clevy,et al.  A micro-assembly station used for 3D reconfigurable hybrid MOEMS assembly , 2009, 2009 IEEE International Symposium on Assembly and Manufacturing.

[16]  T. Fukuda,et al.  Integrated microendeffector for micromanipulation , 1998 .

[17]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[18]  Mark J. Jackson,et al.  Commercializing Micro-Nanotechnology Products , 2007 .

[19]  Yangmin Li,et al.  Hybrid control approach to the peg-in hole problem , 1997, IEEE Robotics Autom. Mag..

[20]  Arthur C. Sanderson,et al.  Micropeg manipulation with a compliant microgripper , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[21]  Silvestro Micera,et al.  Towards a force-controlled microgripper for assembling biomedical microdevices , 2000 .

[22]  Pradeep K. Khosla,et al.  A Theoretical and Experimental Investigation of Impact Control for Manipulators , 1993, Int. J. Robotics Res..

[23]  Annika Raatz,et al.  Concepts for Hybrid Micro Assembly Using Hot Melt Joining , 2008, IPAS.