Dissociated stimulus and response conflict effect in the Stroop task: Evidence from evoked brain potentials and brain oscillations

[1]  Men-Tzung Lo,et al.  Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy , 2014, NeuroImage.

[2]  Kai Wang,et al.  Temporal and spectral profiles of stimulus–stimulus and stimulus–response conflict processing , 2014, NeuroImage.

[3]  Robert Oostenveld,et al.  Oscillatory dynamics of response competition in human sensorimotor cortex , 2013, NeuroImage.

[4]  D. Szűcs,et al.  Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence☆ , 2013, Cortex.

[5]  Antao Chen,et al.  The neural oscillations of conflict adaptation in the human frontal region , 2013, Biological Psychology.

[6]  Zude Zhu,et al.  Perceptual conflict-induced late positive complex in a modified Stroop task , 2013, Neuroscience Letters.

[7]  Qinglin Zhang,et al.  The Neural Dynamics of Conflict Adaptation within a Look-to-Do Transition , 2013, PloS one.

[8]  R. Goebel,et al.  Local Discriminability Determines the Strength of Holistic Processing for Faces in the Fusiform Face Area , 2013, Front. Psychology.

[9]  Ned Jenkinson,et al.  A Role for the Subthalamic Nucleus in Response Inhibition during Conflict , 2012, The Journal of Neuroscience.

[10]  I. David,et al.  The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study. , 2012, Psychophysiology.

[11]  G. Band,et al.  Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence , 2012, Biological Psychology.

[12]  Marcel Bastiaansen,et al.  Integration or Predictability? A Further Specification of the Functional Role of Gamma Oscillations in Language Comprehension , 2012, Front. Psychology.

[13]  Michael X. Cohen,et al.  Theta Dynamics Reveal Domain-specific Control over Stimulus and Response Conflict , 2012, Journal of Cognitive Neuroscience.

[14]  Fruzsina Soltész,et al.  Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study , 2012, BMC Neuroscience.

[15]  Mario Liotti,et al.  Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task , 2012, Cognitive, affective & behavioral neuroscience.

[16]  R. Nigbur,et al.  Theta power as a marker for cognitive interference , 2011, Clinical Neurophysiology.

[17]  Thomas V. Wiecki,et al.  Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold , 2011, Nature Neuroscience.

[18]  S. Wiens,et al.  Behavioral and ERP indices of response conflict in Stroop and flanker tasks. , 2011, Psychophysiology.

[19]  Kathy Conklin,et al.  Electrophysiological measures of conflict detection and resolution in the Stroop task , 2011, Brain Research.

[20]  Antao Chen,et al.  Neural correlates of stimulus and response interference in a 2-1 mapping stroop task. , 2011, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[21]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[22]  Fruzsina Soltész,et al.  Stimulus and response conflict in the color–word Stroop task: A combined electro-myography and event-related potential study , 2010, Brain Research.

[23]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[24]  Dénes Szücs,et al.  Motor conflict in Stroop tasks: Direct evidence from single-trial electro-myography and electro-encephalography , 2009, NeuroImage.

[25]  Dénes Szücs,et al.  Real-time Tracking of Motor Response Activation and Response Competition in a Stroop Task in Young Children: A Lateralized Readiness Potential Study , 2009, Journal of Cognitive Neuroscience.

[26]  John J. B. Allen,et al.  Prelude to and Resolution of an Error: EEG Phase Synchrony Reveals Cognitive Control Dynamics during Action Monitoring , 2009, The Journal of Neuroscience.

[27]  J. Kroger,et al.  A functional dissociation of conflict processing within anterior cingulate cortex , 2008, Human brain mapping.

[28]  J. Leon Kenemans,et al.  Stroop interference and the timing of selective response activation , 2008, Clinical Neurophysiology.

[29]  Simon Hanslmayr,et al.  The Electrophysiological Dynamics of Interference during the Stroop Task , 2008, Journal of Cognitive Neuroscience.

[30]  Fruzsina Soltész,et al.  The interaction of task-relevant and task-irrelevant stimulus features in the number/size congruency paradigm: An ERP study , 2008, Brain Research.

[31]  Fruzsina Soltész,et al.  Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm , 2007, Neuropsychologia.

[32]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[33]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[34]  Li Yao,et al.  Time-Frequency Analysis of EEG Based on Event Related Cognitive Task , 2006, ISNN.

[35]  Cameron S. Carter,et al.  Separating semantic conflict and response conflict in the Stroop task: A functional MRI study , 2005, NeuroImage.

[36]  Nicholas Wymbs,et al.  Neural correlates of conflict processing , 2005, Experimental Brain Research.

[37]  S. Makeig,et al.  Mining event-related brain dynamics , 2004, Trends in Cognitive Sciences.

[38]  Matthias Weisbrod,et al.  Prefrontal-cingulate activation during executive control: which comes first? , 2004, Brain research. Cognitive brain research.

[39]  R. West,et al.  Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks , 2003, Neuropsychologia.

[40]  S. P. Levine,et al.  Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement , 2003, Clinical Neurophysiology.

[41]  Jan De Houwer,et al.  On the role of stimulus-response and stimulus-stimulus compatibility in the Stroop effect , 2003 .

[42]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[43]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[44]  R. West,et al.  Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task , 2000, Brain Research.

[45]  H. Mayberg,et al.  An ERP study of the temporal course of the Stroop color-word interference effect , 2000, Neuropsychologia.

[46]  S. Kornblum,et al.  A Parallel Distributed Processing Model of Stimulus–Stimulus and Stimulus–Response Compatibility , 1999, Cognitive Psychology.

[47]  Colin M. Macleod Half a century of research on the Stroop effect: an integrative review. , 1991, Psychological bulletin.

[48]  M. Coles Modern mind-brain reading: psychophysiology, physiology, and cognition. , 1989, Psychophysiology.

[49]  C. Eriksen,et al.  Pre- and poststimulus activation of response channels: a psychophysiological analysis. , 1988, Journal of experimental psychology. Human perception and performance.

[50]  Alan S. Brown,et al.  Information Processing and Cognition: The Loyola Symposium , 1976 .

[51]  F N Dyer,et al.  The Stroop phenomenon and its use in the stlldy of perceptual, cognitive, and response processes , 1973, Memory & cognition.

[52]  H Egeth,et al.  Verbal interference with encoding in a perceptual classification task. , 1970, Journal of experimental psychology.

[53]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[54]  J. Stroop Studies of interference in serial verbal reactions. , 1992 .