Machine Learning with Dirichlet and Beta Process Priors: Theory and Applications

Machine Learning) Machine Learning with Dirichlet and Beta Process Priors: Theory and Applications by John Paisley Department of Electrical & Computer Engineering Duke University

[1]  Zoubin Ghahramani,et al.  Modeling Dyadic Data with Binary Latent Factors , 2006, NIPS.

[2]  M. Feldman,et al.  Genetic Structure of Human Populations , 2002, Science.

[3]  Zoubin Ghahramani,et al.  Infinite Sparse Factor Analysis and Infinite Independent Components Analysis , 2007, ICA.

[4]  Roland Sauerbrey,et al.  Biography , 1992, Ann. Pure Appl. Log..

[5]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[6]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[7]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[8]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[9]  Robert L. Wolpert,et al.  Simulation of Lévy Random Fields , 1998 .

[10]  Lawrence Carin,et al.  Active Learning and Basis Selection for Kernel-Based Linear Models: A Bayesian Perspective , 2010, IEEE Transactions on Signal Processing.

[11]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[12]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[13]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[14]  D. Madigan,et al.  [Least Angle Regression]: Discussion , 2004 .

[15]  Yee Whye Teh,et al.  Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.

[16]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[17]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[18]  Hal Daumé,et al.  The Infinite Hierarchical Factor Regression Model , 2008, NIPS.

[19]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition , 2006 .

[20]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[21]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[22]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[23]  J. Ghosh Statistics Independent of a Complete Sufficient Statistic , 1988 .

[24]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[25]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[26]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[27]  Peter I. Frazier,et al.  Distance dependent Chinese restaurant processes , 2009, ICML.

[28]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[29]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[30]  Lawrence Carin,et al.  A nonparametric Bayesian model for kernel matrix completion , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[32]  B. Minasny The Elements of Statistical Learning, Second Edition, Trevor Hastie, Robert Tishirani, Jerome Friedman. (2009), Springer Series in Statistics, ISBN 0172-7397, 745 pp , 2009 .

[33]  Guillermo Sapiro,et al.  Nonparametric image interpolation and dictionary learning using spatially-dependent Dirichlet and beta process priors , 2010, 2010 IEEE International Conference on Image Processing.

[34]  D. Dunson,et al.  Kernel stick-breaking processes. , 2008, Biometrika.

[35]  John M. Winn,et al.  Variational Message Passing and its Applications , 2004 .

[36]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[37]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[38]  L. Carin,et al.  Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. , 2009, Cell host & microbe.

[39]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[40]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[41]  D. Aldous Exchangeability and related topics , 1985 .

[42]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[43]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[44]  L. Tardella,et al.  Approximating distributions of random functionals of Ferguson‐Dirichlet priors , 1998 .

[45]  C. Richard Johnson,et al.  Matrix Completion Problems: A Survey , 1990 .

[46]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[47]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[48]  Lawrence Carin,et al.  Music Analysis Using Hidden Markov Mixture Models , 2007, IEEE Transactions on Signal Processing.

[49]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[50]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[51]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[52]  S. Mallat A wavelet tour of signal processing , 1998 .

[53]  Y. Teh,et al.  Indian Buffet Processes with Power-law Behavior , 2009, NIPS.

[54]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[55]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[56]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[57]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[58]  Robert J. Connor,et al.  Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .

[59]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[60]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[61]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[62]  Scott Lindroth,et al.  Dynamic Nonparametric Bayesian Models for Analysis of Music , 2010 .

[63]  David B. Dunson,et al.  Multi-Task Learning for Analyzing and Sorting Large Databases of Sequential Data , 2008, IEEE Transactions on Signal Processing.

[64]  David B. Dunson,et al.  Logistic Stick-Breaking Process , 2011, J. Mach. Learn. Res..

[65]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[66]  Lawrence Carin,et al.  Dirichlet process mixture models with multiple modalities , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[67]  David B Dunson,et al.  Nonparametric Bayesian models through probit stick-breaking processes. , 2011, Bayesian analysis.

[68]  H. Ishwaran,et al.  DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .

[69]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[70]  Eric P. Xing,et al.  mStruct: a new admixture model for inference of population structure in light of both genetic admixing and allele mutations , 2008, ICML '08.

[71]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[72]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[73]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[74]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[75]  Lawrence Carin,et al.  A Stick-Breaking Construction of the Beta Process , 2010, ICML.