Biomimetic Sonar and Neuromorphic Processing Eliminate Reverberation Artifacts

A biomimetic sonar is configured using two conventional sensors that generate point processes related to echo waveform intensity, resembling biological action potential spikes. The sensors point slightly outward from the sonar axis, similar to pinnae in some bats, to acquire slightly different views of the environment during a rotational scan. Artifacts in sonar maps are points that do not relate to actual object locations. Physical criteria identify artifacts by applying echo strength, azimuthal extent, and binaural coincidence criteria. Neuromorphic processing implements these criteria with thresholding, delays, and short-term memories. Artifacts are deleted to produce robust sonar maps. Multiple resolution maps, generated by using two thresholds, illustrate improvements over conventional sonar maps and tradeoffs between resolution and stability

[1]  Whitlow W. L. Au,et al.  The Sonar of Dolphins , 1993, Springer New York.

[2]  Yoram Koren,et al.  Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance , 1995, IEEE Trans. Robotics Autom..

[3]  Kurt Konolige,et al.  Improved Occupancy Grids for Map Building , 1997, Auton. Robots.

[4]  François Charpillet,et al.  Mobile robot localization in dynamic environments using places recognition , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[5]  L A JEFFRESS,et al.  A place theory of sound localization. , 1948, Journal of comparative and physiological psychology.

[6]  Roman Kuc,et al.  Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification , 2002, IEEE Transactions on Biomedical Engineering.

[7]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[8]  Ray Meddis,et al.  Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. , 2006, The Journal of the Acoustical Society of America.

[9]  Roman Kuc,et al.  Three-dimensional tracking using qualitative bionic sonar , 1993, Robotics Auton. Syst..

[10]  Roman Kuc,et al.  Physically Based Simulation Model for Acoustic Sensor Robot Navigation , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Roman Kuc Recognizing Retro-Reflectors with an Obliquely-Oriented Multi-Point Sonar and Acoustic Flow , 2003, Int. J. Robotics Res..

[12]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[13]  Lindsay Kleeman Fast and accurate sonar trackers using double pulse coding , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[14]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[15]  David Sander,et al.  A low-power CMOS neural amplifier with amplitude measurements for spike sorting , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[16]  R. Kuc Sensorimotor model of bat echolocation and prey capture. , 1994, The Journal of the Acoustical Society of America.

[17]  R Kuc,et al.  Transforming echoes into pseudo-action potentials for classifying plants. , 2001, The Journal of the Acoustical Society of America.

[18]  Lindsay Kleeman,et al.  Mobile Robot Sonar for Target Localization and Classification , 1995, Int. J. Robotics Res..

[19]  Roman Kuc,et al.  A Physical Model-Based Analysis of Heterogeneous Environments Using Sonar-ENDURA Method , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[21]  Howie Choset,et al.  An enhanced occupancy map for exploration via pose separation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[22]  Roman Kuc,et al.  Neuro-computational processing of moving sonar echoes classifies and localizes foliage. , 2004, Journal of the Acoustical Society of America.

[23]  Roman Kuc Forward model for sonar maps produced with the Polaroid ranging module , 2003, IEEE Trans. Robotics Autom..

[24]  Cristina Urdiales,et al.  Autonomous global localisation using Markov chains and optimised sonar landmarks , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[25]  Angelo M. Sabatini,et al.  Towards a robust methodology for mobile robot localisation using sonar , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[26]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[27]  Roman Kuc Pseudo-amplitude scan sonar maps , 2001, IEEE Trans. Robotics Autom..

[28]  A. Sabatini,et al.  A stochastic model of the time-of-flight noise in airborne sonar ranging systems , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  Herbert Peremans,et al.  A high-resolution sensor based on tri-aural perception , 1993, IEEE Trans. Robotics Autom..

[30]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[31]  Lindsay Kleeman Advanced Sonar with Velocity Compensation , 2004, Int. J. Robotics Res..