Analysing high frame-rate camera tracking

High frame-rate offers benefits of robust and accurate camera tracking for rapid motion. However, the benefits are generally understated arguing that it is not possible to operate on high frame-rates due to stringent processing budgets and that even today 1060Hz is treated as a standard real-time frame-rate range. How exactly does the choice of a given frame-rate varies as computational budget is changed? This thesis explores the possibilities of tracking at frame-rates higher than this range and argues that the computational cost per frame in trackers that use prediction is substantially reduced when the frame-rate is increased. Additionally, considering the physics of image formation, high frame-rate implies that the upper bound on the shutter time is reduced leading to less motion blur but more noise. On the other hand, low frame-rate often leads to motion blur but reduced noise in the images. Carefully considering the scene lighting that affects the image noise and the camera motion that affects the motion blur and putting these factors together, how are application-dependent performance requirements of accuracy, robustness and computational cost optimised as frame-rate varies? We study 3D camera tracking from a known rigid model as our test problem and analyse the fundamental image alignment approach to understand the choice of frame-rate that affects tracking. We systematically investigate this via a careful synthesis of photorealistic video using ray-tracing of detailed 3D scene, experimentally obtained photo-realistic reponse and noise models and rapid camera motions and later validate the conclusions with a well-controlled real experiment. The thesis provides quantitative conclusions about frame-rate selection, fundamental connections between frame-rate and image resolution and highlights the crucial role of full consideration of physical image formation process in pushing tracking performance.

[1]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[2]  Nassir Navab,et al.  N3M: Natural 3D Markers for Real-Time Object Detection and Pose Estimation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[3]  David W. Murray,et al.  Simulating Low-Cost Cameras for Augmented Reality Compositing , 2010, IEEE Transactions on Visualization and Computer Graphics.

[4]  Shahriar Negahdaripour,et al.  A direct method for locating the focus of expansion , 1989, Comput. Vis. Graph. Image Process..

[5]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[6]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[7]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[8]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Daphna Weinshall,et al.  From Reference Frames to Reference Planes: Multi-View Parallax Geometry and Applications , 1998, ECCV.

[10]  A. R. Hanson,et al.  Robust estimation of camera location and orientation from noisy data having outliers , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[11]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Erik Reinhard,et al.  Natural image statistics for computer graphics , 2001 .

[13]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[14]  Emanuele Trucco,et al.  Making good features track better , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[15]  Frank Dellaert,et al.  Super-resolved texture tracking of planar surface patches , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[16]  Richard Szeliski,et al.  Noise Estimation from a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Shih-Fu Chang,et al.  Classifying Photographic and Photorealistic Computer Graphic Images using Natural Image Statistics , 2006 .

[18]  David W. Murray,et al.  Designing a miniature wearable visual robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Javier Ibanez Guzman,et al.  Accurate visual odometry from a rear parking camera , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[20]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[21]  Ian D. Reid,et al.  Robust Real-Time Visual Tracking Using Pixel-Wise Posteriors , 2008, ECCV.

[22]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[23]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH.

[24]  Patrick Rives,et al.  Dense visual mapping of large scale environments for real-time localisation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Andrea Fusiello,et al.  Tracking Human Motion with Multiple Cameras Using an Articulated Model , 2009, MIRAGE.

[26]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Jiri Matas,et al.  Randomized RANSAC with Td, d test , 2004, Image Vis. Comput..

[29]  Siwei Lyu,et al.  How realistic is photorealistic , 2005 .

[30]  Vincent Lepetit,et al.  Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality , 2012, IEEE Transactions on Visualization and Computer Graphics.

[31]  Vincent Lepetit,et al.  ESM-Blur: Handling & rendering blur in 3D tracking and augmentation , 2009, 2009 8th IEEE International Symposium on Mixed and Augmented Reality.

[32]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[34]  Ian D. Reid,et al.  PWP3D: Real-time Segmentation and Tracking of 3D Objects , 2009, BMVC.

[35]  Berthold K. P. Horn,et al.  Direct methods for recovering motion , 1988, International Journal of Computer Vision.

[36]  Masatoshi Ishikawa,et al.  High-speed throwing motion based on kinetic chain approach , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Heung-Yeung Shum,et al.  Panoramic Image Mosaics , 1998 .

[39]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[40]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[41]  Masatoshi Ishikawa,et al.  Robot dribbling using a high-speed multifingered hand and a high-speed vision system , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Vincent Lepetit,et al.  Pareto-optimal dictionaries for signatures , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[44]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[45]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  P. J. Huber,et al.  Numerical methods for the nonlinear robust regression problem , 1981 .

[47]  Tobias Pietzsch,et al.  A Framework For Evaluating Visual SLAM , 2009, BMVC.

[48]  Eduardo Mario Nebot,et al.  Recursive scan-matching SLAM , 2007, Robotics Auton. Syst..

[49]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[50]  Huei-Yung Lin,et al.  Photo-Consistent Motion Blur Modeling for Realistic Image Synthesis , 2006, PSIVT.

[51]  Roland Siegwart,et al.  Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC , 2009, 2009 IEEE International Conference on Robotics and Automation.

[52]  Shahriar Negahdaripour,et al.  Direct passive navigation: Analytical solution for planes , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[53]  Éric Marchand,et al.  Accurate real-time tracking using mutual information , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[54]  Takeshi Takaki,et al.  1000-fps real-time optical flow detection system , 2010, Electronic Imaging.

[55]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[56]  Fukui Kazuhiro,et al.  Realistic CG Stereo Image Dataset With Ground Truth Disparity Maps , 2012 .

[57]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[58]  Patrick Rives,et al.  An asymmetric real-time dense visual localisation and mapping system , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[59]  Shahriar Negahdaripour,et al.  Determining 3-D Motion of Planar Objects from Image Brightness Patterns , 1985, IJCAI.

[60]  Ian D. Reid,et al.  A Unified Energy Minimization Framework for Model Fitting in Depth , 2012, ECCV Workshops.

[61]  Hauke Strasdat,et al.  Scalable active matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Edward Cutrell,et al.  Measuring the Perception of Visual Realism in Images , 2001, Rendering Techniques.

[63]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[64]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[65]  Roberto Cipolla,et al.  Real-time tracking of complex structures with on-line camera calibration , 2002, Image Vis. Comput..

[66]  Henk L. Muller,et al.  Evaluating Image Segmentation Algorithms Using the Pareto Front , 2002, ECCV.

[67]  Olivier D. Faugeras,et al.  Automatic calibration and removal of distortion from scenes of structured environments , 1995, Optics & Photonics.

[68]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[69]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Donald P. Greenberg,et al.  An experimental evaluation of computer graphics imagery , 1986, TOGS.

[71]  Frank Dellaert,et al.  Fast Image-Based Tracking by Selective Pixel Integration , 2011 .

[72]  C. J. Taylor,et al.  Minimization on the Lie Group SO(3) and Related Manifolds , 1994 .

[73]  Andrew Zisserman,et al.  Robust Object Tracking , 2001 .

[74]  Steven Mills,et al.  New Conditional Sampling Strategies for Speeded-Up RANSAC , 2009, BMVC.

[75]  Harry Shum,et al.  Construction and refinement of panoramic mosaics with global and local alignment , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[76]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[77]  Christine D. Piatko,et al.  Comparing Real and Synthetic Images: Some Ideas about Metrics , 1995, Rendering Techniques.

[78]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[79]  Frédo Durand,et al.  Noise-optimal capture for high dynamic range photography , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[80]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[81]  Jan-Michael Frahm,et al.  Exploiting uncertainty in random sample consensus , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[82]  Kiriakos N. Kutulakos,et al.  Time-constrained photography , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[83]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[84]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[85]  Eduardo Bayro-Corrochano,et al.  Lie algebra template tracking , 2004, ICPR 2004.

[86]  Masatoshi Ishikawa,et al.  Visual impedance using 1 ms visual feedback system , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[87]  Michal Irani,et al.  Recovery of ego-motion using image stabilization , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[88]  Takeo Kanade,et al.  Optical Navigation by the Method of Differences , 1985, IJCAI.

[89]  P. Anandan,et al.  A unified approach to moving object detection in 2D and 3D scenes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[90]  Stefano Soatto,et al.  A semi-direct approach to structure from motion , 2003, The Visual Computer.

[91]  Allan D. Jepson,et al.  Subspace methods for recovering rigid motion I: Algorithm and implementation , 2004, International Journal of Computer Vision.

[92]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[93]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[95]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[96]  Andrew J. Davison,et al.  Real-Time Spherical Mosaicing Using Whole Image Alignment , 2010, ECCV.

[97]  B.K.P. Horn,et al.  Time to Contact Relative to a Planar Surface , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[98]  Atsuto Maki,et al.  Towards a simulation driven stereo vision system , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[99]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[100]  Tobias Höllerer,et al.  Evaluation of tracking robustness in real time panorama acquisition , 2010, 2010 IEEE Virtual Reality Conference (VR).

[101]  Patrick Rives,et al.  Accurate Quadrifocal Tracking for Robust 3D Visual Odometry , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[102]  Roberto Cipolla,et al.  Real-Time Visual Tracking of Complex Structures , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  Stefano Soatto,et al.  KALMANSAC: robust filtering by consensus , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[104]  Jan-Michael Frahm,et al.  Variable baseline/resolution stereo , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[105]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[106]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[107]  Éric Marchand,et al.  Statistically robust 2-D visual servoing , 2006, IEEE Transactions on Robotics.

[108]  Tommi Tykkala,et al.  Direct Iterative Closest Point for real-time visual odometry , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[109]  Pascal Fua,et al.  Texture Boundary Detection for Real-Time Tracking , 2004, ECCV.

[110]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[111]  Jiri Matas,et al.  Optimal Randomized RANSAC , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[113]  Frank Dellaert,et al.  GroupSAC: Efficient consensus in the presence of groupings , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[114]  Steve P. Monacos,et al.  A high frame rate CCD camera with region-of-interest capability , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[115]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[116]  Tom Drummond,et al.  Dynamic measurement clustering to aid real time tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[117]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[118]  Javier Civera,et al.  1-point RANSAC for EKF-based Structure from Motion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[119]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[121]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[122]  Jitendra Malik,et al.  Tracking people with twists and exponential maps , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[123]  Carlo Tomasi,et al.  Direction of heading from image deformations , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[124]  Masatoshi Ishikawa,et al.  High Speed Vision System Using Massively Parallel Processing , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[125]  Masatoshi Ishikawa,et al.  Ball control in high-speed batting motion using hybrid trajectory generator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[126]  Masatoshi Ishikawa,et al.  Motion planning for dynamic folding of a cloth with two high-speed robot hands and two high-speed sliders , 2011, 2011 IEEE International Conference on Robotics and Automation.

[127]  Larry H. Matthies,et al.  Kalman filter-based algorithms for estimating depth from image sequences , 1989, International Journal of Computer Vision.

[128]  P. Anandan,et al.  Efficient representations of video sequences and their applications , 1996, Signal Process. Image Commun..

[129]  Andrew J. Davison,et al.  Automatically and efficiently inferring the hierarchical structure of visual maps , 2009, 2009 IEEE International Conference on Robotics and Automation.

[130]  Hugh F. Durrant-Whyte,et al.  Robust Simultaneous Localization and Mapping for Very Large Outdoor Environments , 2002, ISER.

[131]  Wolfram Burgard,et al.  Towards a benchmark for RGB-D SLAM evaluation , 2011, RSS 2011.

[132]  Daniel Matolin,et al.  A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS , 2011, IEEE Journal of Solid-State Circuits.

[133]  H. Bischof,et al.  Multi-View Stereo : Redundancy Benefits for 3 D Reconstruction , 2011 .

[134]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[135]  Emanuele Trucco,et al.  Improving Feature Tracking with Robust Statistics , 1999, Pattern Analysis & Applications.

[136]  Jitendra Malik,et al.  Discussion for direct versus features session , 2000 .

[137]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[138]  Michel Dhome,et al.  A simple and efficient template matching algorithm , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[139]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[140]  Joachim Weickert,et al.  Dense versus Sparse Approaches for Estimating the Fundamental Matrix , 2011, International Journal of Computer Vision.

[141]  David W. Murray,et al.  Guided-MLESAC: faster image transform estimation by using matching priors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Chris Harris,et al.  RAPID - a video rate object tracker , 1990, BMVC.

[143]  Andrea Fusiello,et al.  Automatic Estimation of the Inlier Threshold in Robust Multiple Structures Fitting , 2009, ICIAP.

[144]  Andrew I. Comport,et al.  Simultaneous super-resolution, tracking and mapping , 2012 .

[145]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[146]  Berthold K. P. Horn,et al.  "Determining optical flow": A Retrospective , 1993, Artif. Intell..

[147]  Roberto Cipolla,et al.  Visual tracking and control using Lie algebras , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[148]  Alois Knoll,et al.  Mutual Information-Based 3D Object Tracking , 2008, International Journal of Computer Vision.

[149]  Masatoshi Ishikawa,et al.  High speed grasping using visual and force feedback , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[150]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[151]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[152]  Selim Benhimane,et al.  Real-time image-based tracking of planes using efficient second-order minimization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[153]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[154]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[155]  Olivier D. Faugeras,et al.  HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[156]  Eduardo Mario Nebot,et al.  Scan-SLAM: Combining EKF-SLAM and Scan Correlation , 2005, FSR.

[157]  Tom Drummond,et al.  Multi-Modal Tracking using Texture Changes , 2004, BMVC.

[158]  Daniel Cremers,et al.  Real-time visual odometry from dense RGB-D images , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[159]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[160]  Shahriar Negahdaripour,et al.  Motion recovery from image sequences using only first order optical flow information , 1992, International Journal of Computer Vision.

[161]  Shree K. Nayar,et al.  What is the space of camera response functions? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[162]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[163]  P. Anandan,et al.  Direct Recovery of Planar-Parallax from Multiple Frames , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[164]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[165]  Harpreet S. Sawhney,et al.  Model-based 2D&3D dominant motion estimation for mosaicing and video representation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[166]  Masatoshi Ishikawa,et al.  High Speed Target Tracking Algorithm for 1 ms Visual Feedback System , 1999 .