The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities

In this paper, we deal with the Tikhonov regularization method for pseudo-monotone equilibrium problems. Under mild conditions of semicontinuity and convexity, we show that strictly pseudo-monotone bifunctions can be also used as regularization bifunctions as well as strongly monotone bifunctions. We extend Berge’s maximum theorem and establish the relationship between quasi-hemivariational inequalities and equilibrium problems. Applications of the Tikhonov regularization method to quasi-hemivariational inequalities are also given.

[1]  Rabian Wangkeeree,et al.  Existence theorems of the hemivariational inequality governed by a multi-valued map perturbed with a nonlinear term in Banach spaces , 2013, J. Glob. Optim..

[2]  Boualem Alleche Multivalued mixed variational inequalities with locally Lipschitzian and locally cocoercive multivalued mappings , 2013 .

[3]  Vicentiu D. Rădulescu,et al.  Equilibrium problems techniques in the qualitative analysis of quasi-hemivariational inequalities , 2015 .

[4]  K. Fan,et al.  A GENERALIZATION OF TYCHONOFFS FIXED POINT THEOREM , 1961 .

[5]  L. Muu,et al.  The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions , 2011 .

[6]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.

[7]  P. D. Panagiotopoulos,et al.  Mathematical Theory of Hemivariational Inequalities and Applications , 1994 .

[8]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[9]  P. D. Panagiotopoulos,et al.  Nonconvex energy functions. Hemivariational inequalities and substationarity principles , 1983 .

[10]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[11]  Siegfried Schaible,et al.  Generalized Monotonicity: Applications to Variational Inequalities and Equilibrium Problems , 2009, Encyclopedia of Optimization.

[12]  X. P. Ding,et al.  Auxiliary Principle and Algorithm for Mixed Equilibrium Problems and Bilevel Mixed Equilibrium Problems in Banach Spaces , 2010 .

[13]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[14]  Abdellatif Moudafi,et al.  Proximal methods for a class of bilevel monotone equilibrium problems , 2010, J. Glob. Optim..

[15]  Siegfried Schaible,et al.  Duality for Equilibrium Problems under Generalized Monotonicity , 2000 .

[16]  Vicentiu D. Rădulescu Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations , 2008 .

[17]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[18]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[19]  Siegfried Schaible,et al.  On strong pseudomonotonicity and (semi)strict quasimonotonicity , 1993 .

[20]  Sophia Th. Kyritsi-Yiallourou,et al.  Handbook of Applied Analysis , 2009 .

[21]  K. Fan A generalization of Tychonoff's fixed point theorem , 1961 .

[22]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[23]  Le Dung Muu,et al.  On Penalty and Gap Function Methods for Bilevel Equilibrium Problems , 2011, J. Appl. Math..

[24]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[25]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[26]  S. Schaible,et al.  4. Application of Generalized Concavity to Economics , 1988 .

[27]  Siegfried Schaible,et al.  Equilibrium Problems under Generalized Convexity and Generalized Monotonicity , 2004, J. Glob. Optim..

[28]  Ch'i Lin Yen,et al.  A minimax inequality and its applications to variational inequalities. , 1981 .

[29]  A. Cambini,et al.  Generalized Convexity and Optimization , 2009 .

[30]  Vicentiu D. Radulescu,et al.  Inequality problems of quasi-hemivariational type involving set-valued operators and a nonlinear term , 2012, J. Glob. Optim..

[31]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[32]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[33]  Gábor Kassay,et al.  On Equilibrium Problems , 2010 .

[34]  C. S. Lalitha,et al.  Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization , 2013 .

[35]  Boualem Alleche On hemicontinuity of bifunctions for solving equilibrium problems , 2014 .

[36]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[37]  A. Cambini,et al.  Generalized Convexity and Optimization: Theory and Applications , 2008 .

[38]  L. Muu,et al.  Convergence of an adaptive penalty scheme for finding constrained equilibria , 1992 .