From Imitation Games to Kakutani
暂无分享,去创建一个
[1] E. M. Hartwell. Boston , 1906 .
[2] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1911 .
[3] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[4] D. Montgomery,et al. Fixed Point Theorems for Multi-Valued Transformations , 1946 .
[5] H. F. Bohnenblust,et al. On a Theorem of Ville , 1949 .
[6] J. Nash. Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[7] G. Debreu,et al. Nonnegative Square Matrices , 1953 .
[8] G. Dantzig,et al. Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .
[9] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[10] C. E. Lemke,et al. Bimatrix Equilibrium Points and Mathematical Programming , 1965 .
[11] H. Scarf. The Core of an N Person Game , 1967 .
[12] Herbert E. Scarf,et al. The Approximation of Fixed Points of a Continuous Mapping , 1967 .
[13] H. Scarf,et al. On The Applications of a Recent Combinatorial Algorithm , 1969 .
[14] B. Eaves. Computing Kakutani Fixed Points , 1971 .
[15] K. Arrow,et al. General Competitive Analysis , 1971 .
[16] L. Shapley. On Balanced Games Without Side Payments , 1973 .
[17] Francesco Mallegni,et al. The Computation of Economic Equilibria , 1973 .
[18] Herbert E. Scarf,et al. The Computation of Economic Equilibria , 1974 .
[19] L. Shapley. A note on the Lemke-Howson algorithm , 1974 .
[20] M. Todd. The Computation of Fixed Points and Applications , 1976 .
[21] John Milnor,et al. Analytic Proofs of the “Hairy Ball Theorem” and the Brouwer Fixed Point Theorem , 1978 .
[22] Editors , 1986, Brain Research Bulletin.
[23] Christos H. Papadimitriou,et al. Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[24] Katta G. Murty,et al. Linear complementarity, linear and nonlinear programming , 1988 .
[25] T. M. Doup,et al. Simplicial Algorithms on the Simplotope , 1988 .
[27] Eitan Zemel,et al. Nash and correlated equilibria: Some complexity considerations , 1989 .
[28] Lloyd S. Shapley,et al. On Kakutani's fixed point theorem, the K-K-M-S theorem and the core of a balanced game , 1991 .
[29] Richard W. Cottle,et al. Linear Complementarity Problem. , 1992 .
[30] B. M. Fulk. MATH , 1992 .
[31] P. Gács,et al. Algorithms , 1992 .
[32] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[33] Walter D. Morris,et al. Lemke Paths on Simple Polytopes , 1994, Math. Oper. Res..
[34] B. Stengel,et al. COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .
[35] H. Kuk. On equilibrium points in bimatrix games , 1996 .
[36] P. Jean-Jacques Herings,et al. An extremely simple proof of the K-K-M-S Theorem , 1997 .
[37] Ilse C. F. Ipsen,et al. THE IDEA BEHIND KRYLOV METHODS , 1998 .
[38] Eric van Damme,et al. Non-Cooperative Games , 2000 .
[39] Christos H. Papadimitriou,et al. Algorithms, Games, and the Internet , 2001, ICALP.
[40] Janet Rosenbaum. The Computational Complexity of Nash Equilibria , 2002 .
[41] Oper , 2002 .
[42] Vincent Conitzer,et al. Complexity Results about Nash Equilibria , 2002, IJCAI.
[43] Bernhard von Stengel,et al. Exponentially many steps for finding a Nash equilibrium in a bimatrix game , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[44] Bruno Codenotti,et al. On the computational complexity of Nash equilibria for (0, 1) bimatrix games , 2005, Inf. Process. Lett..
[45] Xi Chen,et al. 3-NASH is PPAD-Complete , 2005, Electron. Colloquium Comput. Complex..
[46] Vincenzo Bonifaci,et al. On the Complexity of Uniformly Mixed Nash Equilibria and Related Regular Subgraph Problems , 2005, FCT.
[47] J. M. Bilbao,et al. Contributions to the Theory of Games , 2005 .
[48] Christos H. Papadimitriou,et al. Three-Player Games Are Hard , 2005, Electron. Colloquium Comput. Complex..
[49] Xiaotie Deng,et al. Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[50] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[51] Paul W. Goldberg,et al. Reducibility among equilibrium problems , 2006, STOC '06.
[52] Rahul Savani,et al. Hard‐to‐Solve Bimatrix Games , 2006 .
[53] Amin Saberi,et al. Leontief economies encode nonzero sum two-player games , 2006, SODA '06.
[54] Jörg Bewersdorff,et al. Symmetric Games , 2022, Luck, Logic, and White Lies.