A Survey on Bayesian Nonparametric Learning

Bayesian (machine) learning has been playing a significant role in machine learning for a long time due to its particular ability to embrace uncertainty, encode prior knowledge, and endow interpretability. On the back of Bayesian learning’s great success, Bayesian nonparametric learning (BNL) has emerged as a force for further advances in this field due to its greater modelling flexibility and representation power. Instead of playing with the fixed-dimensional probabilistic distributions of Bayesian learning, BNL creates a new “game” with infinite-dimensional stochastic processes. BNL has long been recognised as a research subject in statistics, and, to date, several state-of-the-art pilot studies have demonstrated that BNL has a great deal of potential to solve real-world machine-learning tasks. However, despite these promising results, BNL has not created a huge wave in the machine-learning community. Esotericism may account for this. The books and surveys on BNL written by statisticians are overcomplicated and filled with tedious theories and proofs. Each is certainly meaningful but may scare away new researchers, especially those with computer science backgrounds. Hence, the aim of this article is to provide a plain-spoken, yet comprehensive, theoretical survey of BNL in terms that researchers in the machine-learning community can understand. It is hoped this survey will serve as a starting point for understanding and exploiting the benefits of BNL in our current scholarly endeavours. To achieve this goal, we have collated the extant studies in this field and aligned them with the steps of a standard BNL procedure—from selecting the appropriate stochastic processes through manipulation to executing the model inference algorithms. At each step, past efforts have been thoroughly summarised and discussed. In addition, we have reviewed the common methods for implementing BNL in various machine-learning tasks along with its diverse applications in the real world as examples to motivate future studies.

[1]  Joshua B. Tenenbaum,et al.  Nonparametric Bayesian Policy Priors for Reinforcement Learning , 2010, NIPS.

[2]  Zoubin Ghahramani,et al.  Flexible Martingale Priors for Deep Hierarchies , 2012, AISTATS.

[3]  D. Blei Bayesian Nonparametrics I , 2016 .

[4]  Hiroshi Nakagawa,et al.  Practical collapsed variational bayes inference for hierarchical dirichlet process , 2012, KDD.

[5]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[6]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[7]  Dahua Lin,et al.  Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation , 2013, NIPS.

[8]  Stephen G. Walker,et al.  Bayesian Nonparametric Inference , 2005 .

[9]  Nishanth Koganti,et al.  Bayesian Nonparametric Learning of Cloth Models for Real-Time State Estimation , 2017, IEEE Transactions on Robotics.

[10]  Suchi Saria,et al.  Reliable Decision Support using Counterfactual Models , 2017, NIPS.

[11]  Fernando A. Quintana,et al.  Bayesian Nonparametric Data Analysis , 2015 .

[12]  Jianwen Zhang,et al.  Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora , 2010, KDD.

[13]  Jordan Boyd-Graber,et al.  Topic Models for Translation Domain Adaptation , 2013 .

[14]  Carl E. Rasmussen,et al.  Model-Based Reinforcement Learning with Continuous States and Actions , 2008, ESANN.

[15]  Guangquan Zhang,et al.  Doubly Nonparametric Sparse Nonnegative Matrix Factorization Based on Dependent Indian Buffet Processes , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[16]  Russell Zaretzki,et al.  Beta Process Joint Dictionary Learning for Coupled Feature Spaces with Application to Single Image Super-Resolution , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Thomas L. Griffiths,et al.  A Nonparametric Bayesian Model of Multi-Level Category Learning , 2011, AAAI.

[18]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[19]  Michael I. Jordan,et al.  Bayesian Nonparametric Inference of Switching Dynamic Linear Models , 2010, IEEE Transactions on Signal Processing.

[20]  Jie Lu,et al.  Infinite Author Topic Model Based on Mixed Gamma-Negative Binomial Process , 2015, 2015 IEEE International Conference on Data Mining.

[21]  Amit Surana,et al.  Bayesian Nonparametric Inverse Reinforcement Learning for Switched Markov Decision Processes , 2014, 2014 13th International Conference on Machine Learning and Applications.

[22]  Arnaud Doucet,et al.  Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures , 2007, IEEE Transactions on Signal Processing.

[23]  Sonia Petrone,et al.  An enriched conjugate prior for Bayesian nonparametric inference , 2011 .

[24]  Stefano Favaro,et al.  A new estimator of the discovery probability. , 2012, Biometrics.

[25]  John DeNero,et al.  Sampling Alignment Structure under a Bayesian Translation Model , 2008, EMNLP.

[26]  Kee-Eung Kim,et al.  Bayesian Nonparametric Feature Construction for Inverse Reinforcement Learning , 2013, IJCAI.

[27]  Zoubin Ghahramani,et al.  Beta Diffusion Trees , 2014, ICML.

[28]  W. Sudderth,et al.  Polya Trees and Random Distributions , 1992 .

[29]  Yee Whye Teh,et al.  Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.

[30]  Yun Jiang,et al.  Infinite Latent Conditional Random Fields for Modeling Environments through Humans , 2013, Robotics: Science and Systems.

[31]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[32]  Svetha Venkatesh,et al.  A Slice Sampler for Restricted Hierarchical Beta Process with Applications to Shared Subspace Learning , 2012, UAI.

[33]  Jennifer L. Hill,et al.  Bayesian Nonparametric Modeling for Causal Inference , 2011 .

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Chong Wang,et al.  Nested Hierarchical Dirichlet Processes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Mikkel N. Schmidt,et al.  Nonparametric Bayesian modeling of complex networks: an introduction , 2013, IEEE Signal Processing Magazine.

[37]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[38]  Yee Whye Teh,et al.  Modelling Genetic Variations using Fragmentation-Coagulation Processes , 2011, NIPS.

[39]  David B. Dunson,et al.  The dynamic hierarchical Dirichlet process , 2008, ICML '08.

[40]  Hans-Peter Kriegel,et al.  Dirichlet enhanced relational learning , 2005, ICML.

[41]  Thomas L. Griffiths,et al.  The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..

[42]  Zoubin Ghahramani,et al.  Pitman Yor Diffusion Trees for Bayesian Hierarchical Clustering , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  B. Thompson Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications , 2004 .

[44]  D. Dunson,et al.  The local Dirichlet process , 2011, Annals of the Institute of Statistical Mathematics.

[45]  Michael I. Jordan,et al.  Beta Processes, Stick-Breaking and Power Laws , 2011, 1106.0539.

[46]  Daniel N. Rockmore,et al.  A unifying representation for a class of dependent random measures , 2012, AISTATS.

[47]  Kee-Eung Kim,et al.  Nonparametric Bayesian Inverse Reinforcement Learning for Multiple Reward Functions , 2012, NIPS.

[48]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[49]  Thomas L. Griffiths,et al.  Modeling Transfer Learning in Human Categorization with the Hierarchical Dirichlet Process , 2010, ICML.

[50]  Philip S. Yu,et al.  Evolutionary Clustering by Hierarchical Dirichlet Process with Hidden Markov State , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[51]  Pravesh Ranchod,et al.  Nonparametric Bayesian reward segmentation for skill discovery using inverse reinforcement learning , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[52]  Zenglin Xu,et al.  Bayesian Nonparametric Models for Multiway Data Analysis , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Mahdieh Soleymani Baghshah,et al.  Multi-Modal Distance Metric Learning: ABayesian Non-parametric Approach , 2014, ECCV Workshops.

[54]  T. Griffiths,et al.  A Bayesian framework for word segmentation: Exploring the effects of context , 2009, Cognition.

[55]  Zoubin Ghahramani,et al.  The infinite HMM for unsupervised PoS tagging , 2009, EMNLP.

[56]  Finale Doshi-Velez,et al.  The Infinite Partially Observable Markov Decision Process , 2009, NIPS.

[57]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[58]  Michael I. Jordan,et al.  A Sticky HDP-HMM With Application to Speaker Diarization , 2009, 0905.2592.

[59]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[60]  Arnaud Doucet,et al.  Generalized Polya Urn for Time-varying Dirichlet Process Mixtures , 2007, UAI.

[61]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[62]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[63]  C. J-F,et al.  THE COALESCENT , 1980 .

[64]  Michael I. Jordan,et al.  Tree-Structured Stick Breaking for Hierarchical Data , 2010, NIPS.

[65]  K. Doksum Tailfree and Neutral Random Probabilities and Their Posterior Distributions , 1974 .

[66]  Leslie Pack Kaelbling,et al.  Efficient Bayesian Task-Level Transfer Learning , 2007, IJCAI.

[67]  Eric P. Xing,et al.  Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models , 2013, ICML.

[68]  David B. Dunson,et al.  Dependent Hierarchical Beta Process for Image Interpolation and Denoising , 2011, AISTATS.

[69]  Peter I. Frazier,et al.  Distance dependent Chinese restaurant processes , 2009, ICML.

[70]  Ning Chen,et al.  Infinite Latent SVM for Classification and Multi-task Learning , 2011, NIPS.

[71]  Mark W. Woolrich,et al.  Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models , 2009, NeuroImage.

[72]  Wray L. Buntine,et al.  Dependent Hierarchical Normalized Random Measures for Dynamic Topic Modeling , 2012, ICML.

[73]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[74]  Antonio Lijoi,et al.  A Bayesian nonparametric method for prediction in EST analysis , 2007, BMC Bioinformatics.

[75]  Zoubin Ghahramani,et al.  Relational Learning and Network Modelling Using Infinite Latent Attribute Models , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Sergey Levine,et al.  Nonlinear Inverse Reinforcement Learning with Gaussian Processes , 2011, NIPS.

[77]  J. Kingman,et al.  Completely random measures. , 1967 .

[78]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[79]  David Pfau,et al.  Bayesian Nonparametric Methods for Partially-Observable Reinforcement Learning , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Perry R. Cook,et al.  Bayesian Nonparametric Matrix Factorization for Recorded Music , 2010, ICML.

[81]  John W. Fisher,et al.  Parallel Sampling of DP Mixture Models using Sub-Cluster Splits , 2013, NIPS.

[82]  Svetha Venkatesh,et al.  A Bayesian Nonparametric Joint Factor Model for Learning Shared and Individual Subspaces from Multiple Data Sources , 2012, SDM.

[83]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[84]  Michael I. Jordan,et al.  Combinatorial Clustering and the Beta Negative Binomial Process , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[86]  Alexander J. Smola,et al.  Nested Chinese Restaurant Franchise Process: Applications to User Tracking and Document Modeling , 2013, ICML.

[87]  Longbing Cao,et al.  Dynamic Infinite Mixed-Membership Stochastic Blockmodel , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[88]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[89]  T. Minka Power EP , 2004 .

[90]  Kristian Kersting,et al.  Social Network Mining with Nonparametric Relational Models , 2008, SNAKDD.

[91]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[92]  Shie Mannor,et al.  Bayesian Reinforcement Learning: A Survey , 2015, Found. Trends Mach. Learn..

[93]  Thomas L. Griffiths,et al.  Particle Filtering for Nonparametric Bayesian Matrix Factorization , 2006, NIPS.

[94]  Paul Fearnhead,et al.  Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..

[95]  Yee Whye Teh,et al.  The Infinite Factorial Hidden Markov Model , 2008, NIPS.

[96]  Joshua B. Tenenbaum,et al.  One-Shot Learning with a Hierarchical Nonparametric Bayesian Model , 2011, ICML Unsupervised and Transfer Learning.

[97]  Nitish Srivastava,et al.  Discriminative Transfer Learning with Tree-based Priors , 2013, NIPS.

[98]  Yee Whye Teh,et al.  Collapsed Variational Inference for HDP , 2007, NIPS.

[99]  Phil Blunsom,et al.  A Hierarchical Pitman-Yor Process HMM for Unsupervised Part of Speech Induction , 2011, ACL.

[100]  Yuan Qi,et al.  Nonparametric Bayesian Matrix Factorization by Power-EP , 2010, AISTATS.

[101]  Michael I. Jordan Bayesian Nonparametric Learning : Expressive Priors for Intelligent Systems , 2010 .

[102]  David B. Dunson,et al.  The Kernel Beta Process , 2011, NIPS.

[103]  Lawrence Carin,et al.  Negative Binomial Process Count and Mixture Modeling , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[104]  Geoffrey I. Webb,et al.  Encyclopedia of Machine Learning , 2011, Encyclopedia of Machine Learning.

[105]  N. Dobigeon,et al.  Bayesian nonparametric Principal Component Analysis , 2017, 1709.05667.

[106]  John P Huelsenbeck,et al.  A Dirichlet process model for detecting positive selection in protein-coding DNA sequences. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[108]  M. M. Hassan Mahmud,et al.  Constructing States for Reinforcement Learning , 2010, ICML.

[109]  Michael I. Jordan,et al.  Nonparametric Bayesian Learning of Switching Linear Dynamical Systems , 2008, NIPS.

[110]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[111]  Tomoharu Iwata,et al.  Unsupervised Many-to-Many Object Matching for Relational Data , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  David B. Dunson,et al.  The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning , 2011, ICML.

[113]  Radford M. Neal,et al.  Density Modeling and Clustering Using Dirichlet Diffusion Trees , 2003 .

[114]  Michael J Daniels,et al.  Bayesian nonparametric generative models for causal inference with missing at random covariates , 2017, Biometrics.

[115]  Buzhou Tang,et al.  Network structure exploration via Bayesian nonparametric models , 2014, 1403.0466.

[116]  Morten Mørup,et al.  Nonparametric Bayesian modeling of complex networks: an introduction , 2013, IEEE Signal Processing Magazine.

[117]  Eric P. Xing,et al.  Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models , 2014, UAI.

[118]  Chong Wang,et al.  Truncation-free Online Variational Inference for Bayesian Nonparametric Models , 2012, NIPS.

[119]  D. Temperley Music and probability , 2006 .

[120]  Jun Ma,et al.  Transfer Topic Modeling with Ease and Scalability , 2012, SDM.

[121]  Chong Wang,et al.  Embarrassingly Parallel Variational Inference in Nonconjugate Models , 2015, ArXiv.

[122]  D. Blei,et al.  Truncation-free stochastic variational inference for Bayesian nonparametric models , 2012, NIPS 2012.

[123]  Mingyuan Zhou,et al.  Augmentable Gamma Belief Networks , 2016, J. Mach. Learn. Res..

[124]  Martin A. Tanner,et al.  From EM to Data Augmentation: The Emergence of MCMC Bayesian Computation in the 1980s , 2010, 1104.2210.

[125]  Hirokazu Kameoka,et al.  Bayesian nonparametric music parser , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[126]  Brian Kulis,et al.  Gamma Processes, Stick-Breaking, and Variational Inference , 2015, AISTATS.

[127]  Christopher Holmes,et al.  Bayesian Nonparametrics: Frontmatter , 2010 .

[128]  Yingjian Wang,et al.  Levy Measure Decompositions for the Beta and Gamma Processes , 2012, ICML.

[129]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[130]  Peter I. Frazier,et al.  Distance Dependent Infinite Latent Feature Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[131]  Yee Whye Teh,et al.  The Mondrian Process , 2008, NIPS.

[132]  Emily B. Fox,et al.  Streaming Variational Inference for Bayesian Nonparametric Mixture Models , 2014, AISTATS.

[133]  David B. Dunson,et al.  Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.

[134]  Emily B. Fox,et al.  Bayesian nonparametric learning of complex dynamical phenomena , 2009 .

[135]  D. Dunson,et al.  Kernel stick-breaking processes. , 2008, Biometrika.

[136]  Adelino R. Ferreira da Silva,et al.  A Dirichlet process mixture model for brain MRI tissue classification , 2007, Medical Image Anal..

[137]  M. Steel,et al.  Comparing distributions by using dependent normalized random‐measure mixtures , 2013 .

[138]  Yee Whye Teh,et al.  Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.

[139]  Lan Du,et al.  Differential Topic Models , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[140]  D. Aldous Exchangeability and related topics , 1985 .

[141]  Brahim Chaib-draa,et al.  Bayesian reinforcement learning in continuous POMDPs with gaussian processes , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[142]  Babak Shahbaba,et al.  Nonlinear Models Using Dirichlet Process Mixtures , 2007, J. Mach. Learn. Res..

[143]  Yee Whye Teh,et al.  Bayesian Nonparametric Models , 2010, Encyclopedia of Machine Learning.

[144]  David B. Dunson,et al.  Bayesian Nonparametrics: Nonparametric Bayes applications to biostatistics , 2010 .

[145]  Svetha Venkatesh,et al.  A Bayesian Framework for Learning Shared and Individual Subspaces from Multiple Data Sources , 2011, PAKDD.

[146]  Yee Whye Teh,et al.  Variational Inference for the Indian Buffet Process , 2009, AISTATS.

[147]  Yee Whye Teh,et al.  Collapsed Variational Dirichlet Process Mixture Models , 2007, IJCAI.

[148]  Sinead Williamson,et al.  Nonparametric Network Models for Link Prediction , 2016, J. Mach. Learn. Res..

[149]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[150]  Jaakko Peltonen,et al.  Transfer learning using a nonparametric sparse topic model , 2013, Neurocomputing.

[151]  Lawrence Carin,et al.  Variational Inference for Stick-Breaking Beta Process Priors , 2011, ICML.

[152]  T. Xiang Background Subtraction with Dirichlet Process Mixture Models , 2013 .

[153]  W. Eric L. Grimson,et al.  Construction of Dependent Dirichlet Processes based on Poisson Processes , 2010, NIPS.

[154]  Hedvig Kjellström,et al.  Supervised Hierarchical Dirichlet Processes with Variational Inference , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[155]  Jonathan P. How,et al.  Streaming, Distributed Variational Inference for Bayesian Nonparametrics , 2015, NIPS.

[156]  Yee Whye Teh,et al.  Dependent Normalized Random Measures , 2013, ICML.

[157]  Michael I. Jordan,et al.  JOINT MODELING OF MULTIPLE TIME SERIES VIA THE BETA PROCESS WITH APPLICATION TO MOTION CAPTURE SEGMENTATION , 2013, 1308.4747.

[158]  Warren B. Powell,et al.  Dirichlet Process Mixtures of Generalized Linear Models , 2009, J. Mach. Learn. Res..

[159]  Chong Wang,et al.  Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.

[160]  Lawrence Carin,et al.  Augment-and-Conquer Negative Binomial Processes , 2012, NIPS.

[161]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[162]  Max Welling,et al.  Accelerated Variational Dirichlet Process Mixtures , 2006, NIPS.

[163]  Jonathan P. How,et al.  Bayesian Nonparametric Inverse Reinforcement Learning , 2012, ECML/PKDD.

[164]  Guillaume Bouchard,et al.  Latent IBP Compound Dirichlet Allocation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[165]  Max Welling,et al.  Asynchronous Distributed Learning of Topic Models , 2008, NIPS.

[166]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[167]  Erik B. Sudderth,et al.  Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes , 2012, NIPS.

[168]  Haixun Wang,et al.  Tracking and Connecting Topics via Incremental Hierarchical Dirichlet Processes , 2011, 2011 IEEE 11th International Conference on Data Mining.

[169]  Nicholas J. Foti,et al.  A Survey of Non-Exchangeable Priors for Bayesian Nonparametric Models , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Tao Xiang,et al.  Background Subtraction with DirichletProcess Mixture Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[171]  Jie Lu,et al.  Bayesian Nonparametric Relational Topic Model through Dependent Gamma Processes , 2017, IEEE Transactions on Knowledge and Data Engineering.

[172]  Wolfram Burgard,et al.  Gaussian Beam Processes: A Nonparametric Bayesian Measurement Model for Range Finders , 2007, Robotics: Science and Systems.

[173]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[174]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[175]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[176]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[177]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[178]  Jonathan P. How,et al.  Bayesian Nonparametric Reward Learning From Demonstration , 2015, IEEE Transactions on Robotics.

[179]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[180]  Hongmin Wu,et al.  Robot introspection with Bayesian nonparametric vector autoregressive hidden Markov models , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[181]  Brahim Chaib-draa,et al.  Autonomous tactile perception: A combined improved sensing and Bayesian nonparametric approach , 2014, Robotics Auton. Syst..

[182]  Perry R. Cook,et al.  Content-Based Musical Similarity Computation using the Hierarchical Dirichlet Process , 2008, ISMIR.

[183]  Yee Whye Teh,et al.  A Hierarchical Nonparametric Bayesian Approach to Statistical Language Model Domain Adaptation , 2009, AISTATS.

[184]  Jen-Tzung Chien,et al.  Bayesian Nonparametric Learning for Hierarchical and Sparse Topics , 2018, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[185]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[186]  Lan Du,et al.  Nonparametric Bayesian Topic Modelling with the Hierarchical Pitman-Yor Processes , 2016, Int. J. Approx. Reason..

[187]  Yee Whye Teh,et al.  Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.

[188]  Siyuan Liu,et al.  Effective Mobile Context Pattern Discovery via Adapted Hierarchical Dirichlet Processes , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[189]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[190]  Andrew M. Dai,et al.  The Supervised Hierarchical Dirichlet Process , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[191]  Chong Wang,et al.  Variational Inference for the Nested Chinese Restaurant Process , 2009, NIPS.

[192]  Daniel P. W. Ellis,et al.  Beta Process Sparse Nonnegative Matrix Factorization for Music , 2013, ISMIR.

[193]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[194]  Zoubin Ghahramani,et al.  Distributed Inference for Dirichlet Process Mixture Models , 2015, ICML.

[195]  Sotirios Chatzis,et al.  The Infinite Hidden Markov Random Field Model , 2009, IEEE Transactions on Neural Networks.

[196]  Stephen J. Maybank,et al.  Non-parametric Hidden Conditional Random Fields for action classification , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[197]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[198]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[199]  Ryan P. Adams,et al.  ClusterCluster: Parallel Markov Chain Monte Carlo for Dirichlet Process Mixtures , 2013, ArXiv.

[200]  Yee Whye Teh,et al.  Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes , 2004, NIPS.

[201]  R. Dechter,et al.  Heuristics, Probability and Causality. A Tribute to Judea Pearl , 2010 .

[202]  Scott Lindroth,et al.  Dynamic Nonparametric Bayesian Models for Analysis of Music , 2010 .

[203]  Lars Kai Hansen,et al.  Infinite multiple membership relational modeling for complex networks , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.

[204]  Emily B. Fox,et al.  Sparse graphs using exchangeable random measures , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[205]  Yiannis Demiris,et al.  A nonparametric Bayesian approach toward robot learning by demonstration , 2012, Robotics Auton. Syst..

[206]  Yee Whye Teh,et al.  A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.