Randomized path planning on manifolds based on higher-dimensional continuation

Despite the significant advances in path planning methods, highly constrained problems are still challenging. In some situations, the presence of constraints defines a configuration space that is a non-parametrizable manifold embedded in a high-dimensional ambient space. In these cases, the use of sampling-based path planners is cumbersome since samples in the ambient space have low probability to lay on the configuration space manifold. In this paper, we present a new path planning algorithm specially tailored for highly constrained systems. The proposed planner builds on recently developed tools for higher-dimensional continuation, which provide numerical procedures to describe an implicitly defined manifold using a set of local charts. We propose to extend these methods focusing the generation of charts on the path between the two configurations to connect and randomizing the process to find alternative paths in the presence of obstacles. The advantage of this planner comes from the fact that it directly operates into the configuration space and not into the higher-dimensional ambient space, as most of the existing methods do.

[1]  Russ Tedrake,et al.  Path planning in 1000+ dimensions using a task-space Voronoi bias , 2009, 2009 IEEE International Conference on Robotics and Automation.

[2]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[3]  Siddhartha S. Srinivasa,et al.  Task Space Regions , 2011, Int. J. Robotics Res..

[4]  Pierre Hansen,et al.  On-line and off-line vertex enumeration by adjacency lists , 1991, Oper. Res. Lett..

[5]  Mike Stilman,et al.  Task constrained motion planning in robot joint space , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[7]  Lung-Wen Tsai,et al.  Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators , 1999 .

[8]  F. Park,et al.  Tangent Space RRT with Lazy Projection: An Efficient Planning Algorithm for Constrained Motions , 2010 .

[9]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[10]  A. Pressley Elementary Differential Geometry , 2000 .

[11]  Steven M. LaValle,et al.  Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching , 2007, IEEE Transactions on Robotics.

[12]  Siddhartha S. Srinivasa,et al.  Manipulation planning on constraint manifolds , 2009, 2009 IEEE International Conference on Robotics and Automation.

[13]  Brian Gough,et al.  GNU Scientific Library Reference Manual - Third Edition , 2003 .

[14]  Christoph Borst,et al.  A Humanoid Two-Arm System for Dexterous Manipulation , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[15]  Subramanian Ramamoorthy,et al.  Motion Synthesis through Randomized Exploration on Submanifolds of Configuration Space , 2009, RoboCup.

[16]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[17]  Mike Stilman,et al.  Global Manipulation Planning in Robot Joint Space With Task Constraints , 2010, IEEE Transactions on Robotics.

[18]  Jeffrey C. Trinkle,et al.  Motion Planning for a Class of Planar Closed-chain Manipulators , 2007, Int. J. Robotics Res..

[19]  Florent Lamiraux,et al.  Whole-body task planning for a humanoid robot: a way to integrate collision avoidance , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[20]  Garth H Ballantyne,et al.  The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. , 2003, The Surgical clinics of North America.

[21]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[22]  H. Scheraga,et al.  Exact analytical loop closure in proteins using polynomial equations , 1999 .

[23]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[24]  L. W. Tsai,et al.  Robot Analysis: The Mechanics of Serial and Parallel Ma-nipulators , 1999 .

[25]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[26]  A. Morgan,et al.  SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .

[27]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[28]  Enric Celaya,et al.  A Relational Positioning Methodology for Robot Task Specification and Execution , 2008, IEEE Transactions on Robotics.

[29]  Michael E. Henderson,et al.  Multiparameter Parallel Search Branch Switching , 2005, Int. J. Bifurc. Chaos.

[30]  Federico Thomas,et al.  A Linear Relaxation Technique for the Position Analysis of Multiloop Linkages , 2009, IEEE Transactions on Robotics.

[31]  W. Rheinboldt MANPAK: A set of algorithms for computations on implicitly defined manifolds , 1996 .

[32]  Kamal K. Gupta,et al.  Path planning with general end-effector constraints: using task space to guide configuration space search , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[34]  Edward J. Haug,et al.  Numerical Analysis of the Kinematic Dexterity of Mechanisms , 1994 .

[35]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[36]  Michael E. Henderson,et al.  Higher-Dimensional Continuation , 2007 .

[37]  Li Han,et al.  Convexly Stratified Deformation Spaces and Efficient Path Planning for Planar Closed Chains with Revolute Joints , 2008, Int. J. Robotics Res..

[38]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[39]  Steven M. LaValle,et al.  Motion Planning for Highly Constrained Spaces , 2009 .

[40]  M. Gharbi,et al.  A sampling-based path planner for dual-arm manipulation , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[41]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[42]  Lydia E. Kavraki,et al.  Randomized path planning for linkages with closed kinematic chains , 2001, IEEE Trans. Robotics Autom..

[43]  Nancy M. Amato,et al.  A Kinematics-Based Probabilistic Roadmap Method for Closed Chain Systems , 2001 .

[44]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[45]  Juan Cort Sampling-Based Path Planning on Configuration-Space Costmaps , 2010 .

[46]  Steven M. LaValle,et al.  Motion Planning Part I: The Essentials , 2011 .

[47]  O. Bohigas Branch Switching from Singular Points , 2011 .

[48]  B. Roth,et al.  Synthesis of Path-Generating Mechanisms by Numerical Methods , 1963 .

[49]  Léonard Jaillet,et al.  Path Planning on Manifolds Using Randomized Higher-Dimensional Continuation , 2010, WAFR.

[50]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[51]  Thierry Siméon,et al.  A random loop generator for planning the motions of closed kinematic chains using PRM methods , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[52]  Jean-Paul Watson,et al.  Algorithmic dimensionality reduction for molecular structure analysis. , 2008, The Journal of chemical physics.

[53]  Nancy M. Amato,et al.  Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems , 2010, Int. J. Robotics Res..

[54]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[55]  Josep M. Porta,et al.  Synthesizing grasp configurations with specified contact regions , 2011, Int. J. Robotics Res..