Robust Scale Estimation from Ensemble Inlier Sets for Random Sample Consensus Methods

This paper proposes a RANSAC modification that performs automatic estimation of the scale of inlier noise. The scale estimation takes advantage of accumulated inlier sets from all proposed models. It is shown that the proposed method gives robust results in case of high outlier ratio data, in spite that no user specified threshold is needed. The method also improves sampling efficiency, without requiring any auxiliary information other than the data to be modeled.

[1]  David W. Murray,et al.  Guided-MLESAC: faster image transform estimation by using matching priors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Philip H. S. Torr,et al.  IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[4]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[5]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[6]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Haifeng Chen,et al.  Robust Computer Vision through Kernel Density Estimation , 2002, ECCV.

[8]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[9]  Narendra Ahuja,et al.  A Robust Probabilistic Estimation Framework for Parametric Image Models , 2004, ECCV.

[10]  Peter Meer,et al.  Beyond RANSAC: User Independent Robust Regression , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[11]  Jiri Matas,et al.  Randomized RANSAC with sequential probability ratio test , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  R. Koenker,et al.  On Boscovich's Estimator , 1985 .

[13]  John Mark Bishop,et al.  NAPSAC: high noise, high dimensional model parameterisation - it's in the bag , 2002 .

[14]  Lixin Fan,et al.  Hill Climbing Algorithm for Random Sample Consensus Methods , 2007, ISVC.

[15]  R. Halír Numerically Stable Direct Least Squares Fitting of Ellipses , 1998 .

[16]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[17]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[18]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Slawomir J. Nasuto,et al.  NAPSAC: High Noise, High Dimensional Robust Estimation - it's in the Bag , 2002, BMVC.

[20]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[21]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[22]  Haifeng Chen,et al.  Robust regression with projection based M-estimators , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[23]  David Suter,et al.  Robust adaptive-scale parametric model estimation for computer vision , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..