Homogenization in reaction-diffusion PDEs under space and time-dependent heterogeneities

We study spatial homogenization of nonlinear reaction-diffusion PDEs subject to a class of spatially and temporally-varying heterogeneities. We show that an incremental passivity property in the nominal reaction dynamics is fundamental in guaranteeing homogenization of trajectories. Our distributed control achieves homogenization by defining an internal model subsystem for each output corresponding to the respective heterogeneity. We illustrate our algorithm on a system with bistable dynamics. The main contribution of the paper is a constructive approach to guarantee spatial homogenization under heterogeneities.

[1]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[2]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[3]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[4]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[5]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[6]  Eduardo D. Sontag,et al.  Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach , 2009, IEEE Transactions on Automatic Control.

[7]  D. Hoff,et al.  LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS* , 1978 .

[8]  Pogromskiy Cooperative oscillatory behavior of mutually coupled dynamical systems , 2005 .

[9]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[10]  Guy-Bart Stan,et al.  Robust synchronization in networks of cyclic feedback systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[11]  Claudio De Persis,et al.  Internal Models for Nonlinear Output Agreement and Optimal Flow Control , 2013, NOLCOS.

[12]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[13]  David M. Umulis,et al.  The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. , 2009, Mathematical modelling of natural phenomena.

[14]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[15]  Lorenzo Marconi,et al.  Incremental passivity and output regulation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[16]  Mario di Bernardo,et al.  Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Murat Arcak,et al.  A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser , 2012, PLoS Comput. Biol..

[18]  Claudio De Persis,et al.  On the internal model principle in formation control and in output synchronization of nonlinear systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Murat Arcak,et al.  Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems , 2011, Autom..

[20]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  J. L. Jackson,et al.  Dissipative structure: an explanation and an ecological example. , 1972, Journal of theoretical biology.

[23]  Frank Allgöwer,et al.  On Synchronous Steady States and Internal Models of Diffusively Coupled Systems , 2013, IEEE Transactions on Automatic Control.

[24]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[25]  Brian Ingalls,et al.  Designing synchronization protocols in networks of coupled nodes under uncertainty , 2012, 2012 American Control Conference (ACC).

[26]  Mihailo R. Jovanovic,et al.  A Passivity-Based Approach to Stability of Spatially Distributed Systems With a Cyclic Interconnection Structure , 2008, IEEE Transactions on Automatic Control.

[27]  Mark W. Spong,et al.  On Exponential Synchronization of Kuramoto Oscillators , 2009, IEEE Transactions on Automatic Control.

[28]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[29]  J. Hale Diffusive coupling, dissipation, and synchronization , 1997 .

[30]  Peng Yang,et al.  Stability and Convergence Properties of Dynamic Average Consensus Estimators , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[31]  Murat Arcak,et al.  An adaptive algorithm for synchronization in diffusively-coupled systems , 2013, 2014 American Control Conference.

[32]  He Bai,et al.  Output Synchronization of Nonlinear Systems under Input Disturbances , 2013, ArXiv.

[33]  Florian Dörfler,et al.  Exploring synchronization in complex oscillator networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[34]  Randy A. Freeman,et al.  Robust dynamic average consensus of time-varying inputs , 2010, 49th IEEE Conference on Decision and Control (CDC).

[35]  Rodolphe Sepulchre,et al.  Analysis of Interconnected Oscillators by Dissipativity Theory , 2007, IEEE Transactions on Automatic Control.