Shortest path planning for a tethered robot

We consider the problem of finding the shortest path for a tethered robot in a planar environment with polygonal obstacles of n total vertices. The robot is attached to an anchor point by a tether of finite length. The robot can cross the tether; i.e., the tether can be self-intersecting. Neither the robot nor the tether may enter the interior of any obstacle. The initial tether configuration is given as a polyline of k vertices.If the tether is automatically retracted and kept taut, we present an O ( k n 2 log ? n ) time algorithm to find the shortest path between the source and the destination point. This improves the previous O ( l k n 3 ) time algorithm 24, where l is the number of loops in the initial tether configuration. If the tether can only be retracted while the robot backtracks along the tether, we present an algorithm to find the shortest path in O ( ( n + log ? k ) log ? n ) time.

[1]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Joseph S. B. Mitchell,et al.  Two-point Euclidean shortest path queries in the plane , 1999, SODA '99.

[3]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[4]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[5]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[6]  Roberto Tamassia,et al.  Optimal Shortest Path and Minimum-Link Path Queries Between Two Convex Polygons Inside a Simple Polygonal Obstacle , 1997, Int. J. Comput. Geom. Appl..

[7]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[8]  Vladimir J. Lumelsky,et al.  Moving multiple tethered robots between arbitrary configurations , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[9]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[10]  B. R. Thompson,et al.  Rosie: A mobile worksystem for decontamination and dismantlement operations , 1996 .

[11]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[12]  F. W. Sinden,et al.  The Tethered Robot Problem , 1990, Int. J. Robotics Res..

[13]  Sergey Bereg,et al.  Computing homotopic shortest paths in the plane , 2003, SODA.

[14]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[15]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[16]  Takeo Igarashi,et al.  Homotopic Path Planning on Manifolds for Cabled Mobile Robots , 2010, WAFR.

[17]  James U. Korein,et al.  Robotics , 2018, IBM Syst. J..

[18]  Howie Choset,et al.  Sensor based planning. II. Incremental construction of the generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Universitgtt des Saarlandes Fast Triangulation of the Plane with Respect to Simple Polygons , 2005 .

[20]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[21]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[22]  Patrick G. Xavier Shortest path planning for a tethered robot or an anchored cable , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Vladimir J. Lumelsky,et al.  Motion planning in R3 for multiple tethered robots , 1999, IEEE Trans. Robotics Autom..

[24]  Vladimir J. Lumelsky,et al.  The ties that bind: motion planning for multiple tethered robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.