Spatial partitioning of road traffic networks and their temporal evolution

Urban areas generally attract people from all interior areas. According to the current global trend, people are rapidly migrating from rural towards urban areas for several reasons that include availing better livelihood services and seeking better employment opportunities. Consequently, the population of cities all over the world is increasing significantly, and thereby raising the mobility demands manyfold. This strongly motivates the research areas of urban planning and urban computing to develop innovative technologies and move towards smart and more sustainable cities. As most of the urban population travel daily or frequently for their work or studies, traffic congestion has become a very important practical problem. It is affecting the urban population directly by incurring extra cost on the fuel and extra time spent, and indirectly in many ways. An important concern in smart urbanization of our societies is the avoidance of such congestions and maintenance of a smooth transportation. While the infrastructure development is one direction to deal with this problem, the analysis of spatial traffic data to discover the congestion formation and propagation patterns, and apply them to optimize the traffic flow is another direction. The research on road traffic networks data analysis is growing with the problems like fastest route computation, traffic clustering, traffic prediction, emerging event detection, anomaly detection and bottleneck identification. To discover the congestion patterns, the continuous tracking of the spatiotemporal evolution of the traffic load leading to congestions is an important problem. The research on development of methods to identify the congested partitions effectively and track their evolution efficiently has been very limited so far. In this thesis, we aim to capture the spatiotemporal evolution of urban road traffic networks. To this end, we propose technical methods to effectively partition road traffic networks in order to obtain the differently congested partitions at a point of time, and incrementally update those partitions in an efficient manner in order to track their evolution in real time. We firstly present a scalable method for traffic-based spatial partitioning of urban road traffic networks. It is based on a spectral theory based novel graph cut (referred as α-Cut)

[1]  Khaled Abdelghany,et al.  A network partitioning methodology for distributed traffic management applications , 2014 .

[2]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[3]  Kazutoshi Sumiya,et al.  Discovery of unusual regional social activities using geo-tagged microblogs , 2011, World Wide Web.

[4]  Krithi Ramamritham,et al.  Real Time Discovery of Dense Clusters in Highly Dynamic Graphs: Identifying Real World Events in Highly Dynamic Environments , 2012, Proc. VLDB Endow..

[5]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[6]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[8]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[9]  Kazutoshi Sumiya,et al.  Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection , 2010, LBSN '10.

[10]  Sanjay Chawla,et al.  Inferring the Root Cause in Road Traffic Anomalies , 2012, 2012 IEEE 12th International Conference on Data Mining.

[11]  Wang-Chien Lee,et al.  Clustering and aggregating clues of trajectories for mining trajectory patterns and routes , 2015, The VLDB Journal.

[12]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[13]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Cyrus Shahabi,et al.  Crowd sensing of traffic anomalies based on human mobility and social media , 2013, SIGSPATIAL/GIS.

[15]  Divesh Srivastava,et al.  Dense subgraph maintenance under streaming edge weight updates for real-time story identification , 2012, The VLDB Journal.

[16]  Vassilis J. Tsotras,et al.  Comparison of access methods for time-evolving data , 1999, CSUR.

[17]  Ding-Zhu Du,et al.  A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering , 2003, J. Glob. Optim..

[18]  Wilfred Ng,et al.  Finding distance-preserving subgraphs in large road networks , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[19]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[20]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[21]  Naphtali Rishe,et al.  Keyword Search on Spatial Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[22]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[23]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[24]  Derek Greene,et al.  Tracking the Evolution of Communities in Dynamic Social Networks , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[25]  Jiawei Han,et al.  A Particle-and-Density Based Evolutionary Clustering Method for Dynamic Networks , 2009, Proc. VLDB Endow..

[26]  K. Selçuk Candan,et al.  SBV-Cut: Vertex-cut based graph partitioning using structural balance vertices , 2012, Data Knowl. Eng..

[27]  Verena Kantere,et al.  On-line discovery of hot motion paths , 2008, EDBT '08.

[28]  Yang Du,et al.  The Optimal-Location Query , 2005, SSTD.

[29]  Xuesong Zhou,et al.  Monitoring Travel Time Reliability from the Cloud , 2012 .

[30]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[31]  Xiaoru Yuan,et al.  Visual Traffic Jam Analysis Based on Trajectory Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[32]  Dapeng Li,et al.  Discovering Spatial Co-Clustering Patterns in Traffic Collision Data , 2013, IWCTS '13.

[33]  Ambuj K. Singh,et al.  Distributed Spatial Clustering in Sensor Networks , 2006, EDBT.

[34]  Mohamed F. Mokbel,et al.  Location-based and preference-aware recommendation using sparse geo-social networking data , 2012, SIGSPATIAL/GIS.

[35]  Chi-Yin Chow,et al.  Towards location-based social networking services , 2010, LBSN '10.

[36]  D. Sorensen,et al.  Block reduction of matrices to condensed forms for eigenvalue computations , 1990 .

[37]  Padhraic Smyth,et al.  A Spectral Clustering Approach To Finding Communities in Graph , 2005, SDM.

[38]  Ming Gu,et al.  Spectral min-max cut for graph partitioning and data clustering , 2001 .

[39]  Christian S. Jensen,et al.  Efficient continuously moving top-k spatial keyword query processing , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[40]  Chih-Ya Shen,et al.  On socio-spatial group query for location-based social networks , 2012, KDD.

[41]  Guanling Chen,et al.  Analysis of a Location-Based Social Network , 2009, 2009 International Conference on Computational Science and Engineering.

[42]  Yasuhiro Fujiwara,et al.  SCAN++: Efficient Algorithm for Finding Clusters, Hubs and Outliers on Large-scale Graphs , 2015, Proc. VLDB Endow..

[43]  Wen-Chih Peng,et al.  An incremental algorithm for clustering spatial data streams: exploring temporal locality , 2013, Knowledge and Information Systems.

[44]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[45]  Shu Lin,et al.  A dynamic network partition method for heterogenous urban traffic networks , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[46]  Huijun Sun,et al.  Spatial distribution complexities of traffic congestion and bottlenecks in different network topologies , 2014 .

[47]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[48]  Peter Sanders,et al.  Recent Advances in Graph Partitioning , 2013, Algorithm Engineering.

[49]  Giovanni Bisignani,et al.  To build or not to build , 2005 .

[50]  Nikolaos Geroliminis,et al.  On the spatial partitioning of urban transportation networks , 2012 .

[51]  Hai Le Vu,et al.  Spatial Partitioning of Large Urban Road Networks , 2014, EDBT.

[52]  Hai Le Vu,et al.  Partitioning road networks using density peak graphs: Efficiency vs. accuracy , 2017, Inf. Syst..

[53]  Hai Le Vu,et al.  Tracking the Evolution of Congestion in Dynamic Urban Road Networks , 2016, CIKM.

[54]  Hongsheng Qi,et al.  Tracing Road Network Bottleneck by Data Driven Approach , 2016, PloS one.

[55]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[56]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[57]  Katharina Morik,et al.  Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management , 2014, EDBT.

[58]  Hesham Rakha,et al.  Congestion Prediction Using Adaptive Boosting Machine Learning Classifiers , 2014 .

[59]  João B. Rocha-Junior,et al.  Top-k spatial keyword queries on road networks , 2012, EDBT '12.

[60]  Krishna P. Gummadi,et al.  A measurement-driven analysis of information propagation in the flickr social network , 2009, WWW '09.

[61]  Kai Zheng,et al.  Cost-Efficient Spatial Network Partitioning for Distance-Based Query Processing , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[62]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[63]  Haggai Roitman,et al.  An author-reader influence model for detecting topic-based influencers in social media , 2014, HT.

[64]  Xing Xie,et al.  Discovering spatio-temporal causal interactions in traffic data streams , 2011, KDD.

[65]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[66]  Mohammed J. Zaki,et al.  ProfileRank: finding relevant content and influential users based on information diffusion , 2013, SNAKDD '13.

[67]  Torsten Suel,et al.  Efficient query processing in geographic web search engines , 2006, SIGMOD Conference.

[68]  Yang Du,et al.  On Computing Top-t Most Influential Spatial Sites , 2005, VLDB.

[69]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[70]  Heng Tao Shen,et al.  Discovering popular routes from trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[71]  Udayan Khurana,et al.  Efficient snapshot retrieval over historical graph data , 2012, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[72]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[73]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[74]  Hong Cheng,et al.  Graph Clustering Based on Structural/Attribute Similarities , 2009, Proc. VLDB Endow..

[75]  Kyriakos Mouratidis,et al.  Shortest path computation on air indexes , 2010, Proc. VLDB Endow..

[76]  邢凯,et al.  Traffic clustering and online traffic prediction in vehicle networks: A social influence perspective , 2012 .

[77]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[78]  Nikolaos Geroliminis,et al.  Empirical Observations of Congestion Propagation and Dynamic Partitioning with Probe Data for Large-Scale Systems , 2014 .

[79]  Stavros Papadopoulos,et al.  A General Framework for Geo-Social Query Processing , 2013, Proc. VLDB Endow..

[80]  Hans-Arno Jacobsen,et al.  Processing proximity relations in road networks , 2010, SIGMOD Conference.

[81]  Ahmed Eldawy,et al.  LARS: A Location-Aware Recommender System , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[82]  Yunpeng Wang,et al.  Percolation transition in dynamical traffic network with evolving critical bottlenecks , 2014, Proceedings of the National Academy of Sciences.

[83]  Gang Chen,et al.  Evaluating geo-social influence in location-based social networks , 2012, CIKM.

[84]  Giuseppe F. Italiano,et al.  Experimental analysis of dynamic all pairs shortest path algorithms , 2004, SODA '04.

[85]  Weiwei Sun,et al.  Circle of Friend Query in Geo-Social Networks , 2012, DASFAA.

[86]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[87]  João B. Rocha-Junior,et al.  Efficient Processing of Top-k Spatial Keyword Queries , 2011, SSTD.

[88]  Xiaowei Xu,et al.  SCAN: a structural clustering algorithm for networks , 2007, KDD '07.

[89]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[90]  Cheng Long,et al.  A New Framework for Traffic Anomaly Detection , 2014, SDM.

[91]  Anthony K. H. Tung,et al.  Spatial clustering methods in data mining : A survey , 2001 .

[92]  Ashish Bhaskar,et al.  Brisbane Macroscopic Fundamental Diagram : empirical findings on network partitioning and incident detection , 2014 .

[93]  John Gaffney,et al.  Real-time traffic performance measures of adaptive traffic signal control systems , 2006 .

[94]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[95]  Yizhou Sun,et al.  RankClus: integrating clustering with ranking for heterogeneous information network analysis , 2009, EDBT '09.

[96]  Farnoush Banaei Kashani,et al.  Online Computation of Fastest Path in Time-Dependent Spatial Networks , 2011, SSTD.

[97]  Ziyou Gao,et al.  Urban traffic congestion propagation and bottleneck identification , 2008, Science in China Series F: Information Sciences.

[98]  Ling Huang,et al.  Fast approximate spectral clustering , 2009, KDD.

[99]  Yufei Tao,et al.  Query Processing in Spatial Network Databases , 2003, VLDB.

[100]  Jörg Sander Density-Based Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[101]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[102]  Ling Chen,et al.  A system for mining interesting tourist locations and travel sequences from public geo-tagged photos , 2015, Data Knowl. Eng..

[103]  Jae-Gil Lee,et al.  Traffic Density-Based Discovery of Hot Routes in Road Networks , 2007, SSTD.

[104]  S. Muthukrishnan,et al.  Influence sets based on reverse nearest neighbor queries , 2000, SIGMOD '00.

[105]  Jiawei Han,et al.  Adaptive Fastest Path Computation on a Road Network: A Traffic Mining Approach , 2007, VLDB.

[106]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[107]  Hai Le Vu,et al.  RoadRank: Traffic Diffusion and Influence Estimation in Dynamic Urban Road Networks , 2015, CIKM.

[108]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[109]  Xuemin Lin,et al.  Inverted linear quadtree: Efficient top k spatial keyword search , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[110]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[111]  Christian S. Jensen,et al.  Mining significant semantic locations from GPS data , 2010, Proc. VLDB Endow..

[112]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[113]  Richard T. Snodgrass,et al.  A taxonomy of time databases , 1985, SIGMOD Conference.

[114]  Yun Chi,et al.  Identifying opinion leaders in the blogosphere , 2007, CIKM '07.

[115]  Laks V. S. Lakshmanan,et al.  Incremental cluster evolution tracking from highly dynamic network data , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[116]  Serge P. Hoogendoorn,et al.  Temporal Tracking of Congested Partitions in Dynamic Urban Road Networks , 2016 .

[117]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[118]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[119]  Gultekin Özsoyoglu,et al.  Temporal and Real-Time Databases: A Survey , 1995, IEEE Trans. Knowl. Data Eng..

[120]  Yang Du,et al.  Finding Fastest Paths on A Road Network with Speed Patterns , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[121]  Nicolas Lefebvre,et al.  Fast shortest path computation in time-dependent traffic networks , 2007 .

[122]  Hanan Samet,et al.  Spatial Data Structures , 1995, Modern Database Systems.

[123]  Anthony K. H. Tung,et al.  Scalable top-k spatial keyword search , 2013, EDBT '13.

[124]  Ahmed Eldawy,et al.  MNTG: An Extensible Web-Based Traffic Generator , 2013, SSTD.

[125]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[126]  Ahmed Eldawy,et al.  A demonstration of MNTG - A web-based road network traffic generator , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[127]  Robert L. Smith,et al.  Approximating Shortest Paths in Large-Scale Networks with an Application to Intelligent Transportation Systems , 1998, INFORMS J. Comput..

[128]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[129]  Elke A. Rundensteiner,et al.  Hierarchical optimization of optimal path finding for transportation applications , 1996, CIKM '96.

[130]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[131]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[132]  Christos Doulkeridis,et al.  Efficient Processing of Top-k Spatial Preference Queries , 2010, Proc. VLDB Endow..