Framework for Natural Landmark-based Robot Localization

In this paper we present a framework for vision-based robot localization using natural planar landmarks. Specifically, we demonstrate our framework with planar targets using Fern classifiers that have been shown to be robust against illumination changes, perspective distortion, motion blur, and occlusions. We add stratified sampling in the image plane to increase robustness of the localization scheme in cluttered environments and on-line checking for false detection of targets to decrease false positives. We use all matching points to improve pose estimation and an off-line target evaluation strategy to improve a priori map building. We report experiments demonstrating the accuracy and speed of localization. Our experiments entail synthetic and real data. Our framework and our improvements are however more general and the Fern classifier could be replaced by other techniques.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Eric Krotkov,et al.  Mobile robot localization using a single image , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[3]  Gregory D. Hager,et al.  Real-time vision-based robot localization , 1993, IEEE Trans. Robotics Autom..

[4]  Hobart R. Everett,et al.  Mobile Robot Positioning - Sensors and Techniques , 1997 .

[5]  Hobart R. Everett,et al.  Mobile robot positioning: Sensors and techniques , 1997, J. Field Robotics.

[6]  Gregory Dudek,et al.  Learning visual landmarks for pose estimation , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Sebastian Thrun,et al.  Probabilistic Algorithms in Robotics , 2000, AI Mag..

[9]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[10]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[12]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Andrew Calway,et al.  Real-Time Camera Tracking Using a Particle Filter , 2005, BMVC.

[14]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[15]  Walterio W. Mayol-Cuevas,et al.  Real-Time and Robust Monocular SLAM Using Predictive Multi-resolution Descriptors , 2006, ISVC.

[16]  Tom Drummond,et al.  Edge landmarks in monocular SLAM , 2009, Image Vis. Comput..

[17]  Axel Pinz,et al.  Robust Pose Estimation from a Planar Target , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[19]  Ian D. Reid,et al.  Real-Time SLAM Relocalisation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  Didier Stricker,et al.  Feature Management for Efficient Camera Tracking , 2007, ACCV.

[21]  Francisco Bonin-Font,et al.  Visual Navigation for Mobile Robots: A Survey , 2008, J. Intell. Robotic Syst..

[22]  David W. Murray,et al.  Improving the Agility of Keyframe-Based SLAM , 2008, ECCV.

[23]  Tom Drummond,et al.  Edge landmarks in monocular SLAM , 2009, Image Vis. Comput..

[24]  Eric Royer,et al.  Matching Planar Features for Robot Localization , 2009, ISVC.

[25]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Frank Dellaert,et al.  Learning visibility of landmarks for vision-based localization , 2010, 2010 IEEE International Conference on Robotics and Automation.

[27]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.