The communication complexity of addition

Suppose each of k ≤ no(1) players holds an n-bit number xi in its hand. The players wish to determine if ∑ i≤k xi = s. We give a public-coin protocol with error 1% and communication O(k lg k). The communication bound is independent of n, and for k ≥ 3 improves on the O(k lg n) bound by Nisan (Bolyai Soc. Math. Studies; 1993). Our protocol also applies to addition modulo m. In this case we give a matching (public-coin) Ω(k lg k) lower bound for various m. We also obtain some lower bounds over the integers, including Ω(k lg lg k) for protocols that are one-way, like ours. We give a protocol to determine if ∑ xi > s with error 1% and communication O(k lg k) lg n. For k ≥ 3 this improves on Nisan’s O(k lg n) bound. A similar improvement holds for computing degree-(k − 1) polynomial-threshold functions in the number-on-forehead model. We give a (public-coin, 2-player, tight) Ω(lg n) lower bound to determine if x1 > x2. This improves on the Ω( √ lg n) bound by Smirnov (1988). As an application, we show that polynomial-size AC0 circuits augmented with O(1) threshold (or symmetric) gates cannot compute cryptographic pseudorandom functions, extending the result about AC0 by Linial, Mansour, and Nisan (J. ACM; 1993). ∗Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 152 (2011)

[1]  James Aspnes,et al.  The expressive power of voting polynomials , 1991, STOC '91.

[2]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[3]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[4]  N. Nisan The communication complexity of threshold gates , 1993 .

[5]  Emanuele Viola,et al.  Hardness amplification proofs require majority , 2008, SIAM J. Comput..

[6]  Johan Håstad,et al.  On the Size of Weights for Threshold Gates , 1994, SIAM J. Discret. Math..

[7]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[8]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for GF(2) Polynomials and Multiparty Protocols , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[9]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[10]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[11]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[12]  Stefan Lucks,et al.  On the Minimal Hardware Complexity of Pseudorandom Function Generators , 2001, STACS.

[13]  Richard Beigel When do extra majority gates help? Polylog (N) majority gates are equivalent to one , 2005, computational complexity.

[14]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[15]  P. Beame A switching lemma primer , 1994 .

[16]  Ran Raz,et al.  The BNS-Chung criterion for multi-party communication complexity , 2000, computational complexity.

[17]  Alexander A. Razborov,et al.  Majority gates vs. general weighted threshold gates , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[18]  Moni Naor,et al.  Synthesizers and their application to the parallel construction of pseudo-random functions , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[19]  Fan Chung Graham,et al.  Communication Complexity and Quasi Randomness , 1993, SIAM J. Discret. Math..

[20]  Rocco A. Servedio,et al.  Learning and Lower Bounds for AC0 with Threshold Gates , 2010, APPROX-RANDOM.

[21]  Moni Naor,et al.  Pseudorandom Functions and Factoring , 2002, SIAM J. Comput..

[22]  Emanuele Viola,et al.  Pseudorandom bits for constant depth circuits with few arbitrary symmetric gates , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[23]  James Aspnes,et al.  The expressive power of voting polynomials , 1994, Comb..

[24]  Leonid A. Levin,et al.  One-way functions and pseudorandom generators , 1985, STOC '85.

[25]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[26]  Emanuele Viola,et al.  Pseudorandom Bits for Polynomials , 2010, SIAM J. Comput..

[27]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[28]  S. Muroga,et al.  Theory of majority decision elements , 1961 .

[29]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[30]  Eli Upfal,et al.  Computing with Noisy Information , 1994, SIAM J. Comput..

[31]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[32]  Martti Penttonen,et al.  A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.

[33]  Emanuele Viola Cell-Probe Lower Bounds for Prefix Sums , 2009, Electron. Colloquium Comput. Complex..

[34]  Avinatan Hassidim,et al.  The Bayesian Learner is Optimal for Noisy Binary Search  (and Pretty Good for Quantum as Well) , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.